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1 Overview of the project objectives 

This document provides the third year report of the “e-sensing” FAPESP project 

(grant 2014/08398-6), and describes the activities carried out during the period 

01.01.2017 to 31.12.2016. We will use numbers (such as [10]) to refer to the list of 

papers published by us in 2016, available in the References section.  

 Currently, scientists ignore the time reference inherent to Earth observation 

data, producing land cover maps taking either a single or at most two time 

references. As a result, only a small part of the big data sets produced by remote 

sensing satellite are ever used. This leads to an important research question: How 

can we use e-science methods and techniques to substantially improve the extraction of 

land use and land cover change information from big Earth Observation data sets in an 

open and reproducible way?  

 In response to this challenge, our project will conceive, build and deploy a new 

type of knowledge platform for organization, access, processing and analysis of big Earth 

observation data. The key elements of this knowledge platform are: 

1. A scientific database based on the SciDB innovative array database 

management system, capable of managing large remote sensing data 

sets. 

2. An innovative set of spatiotemporal image analysis methods, mostly 

based in analysis of satellite image time series. These methods are all 

developed as open source software to promote reproducibility. 

 The innovative infrastructure developed in the project will be used for new 

types of information extraction from Earth observation data, focused on land 

cover and land use change of large data sets. Our knowledge platform will allow 

scientists to perform data analysis directly on big data servers. Scientists will be 

then able to develop completely new algorithms that can seamlessly span 

partitions in space, time, and spectral dimensions.  

 We aim to make two important contributions: 

1. New database methods and techniques that use array databases to build 

a geographical information system that handles big spatial data.  

2. New data analysis, data mining, and image processing methods to 

extract land change information from large Earth observation data sets.  
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2 Main results of year 3 (January – December 2017)  

 During 2017, our most relevant results were: 

1. Development of machine learning and deep learning methods that allow 

high accuracy in land use and land cover classification using satellite 

image time series [5] [14]. 

2. Implementation of SITS, an R package for working with satellite image 

time series. It includes data retrieval, clustering, and provides machine 

learning methods for time series classification, including SVM, LDA, 

QDA, GLM, Lasso, Random Forests and Deep Learning [6] [24]. 

3. Proposal, development and validation of a spatiotemporal calculus for 

reasoning about land use change dynamics [2] [8] [15]. 

4. Development of a new land use and land cover map for the state of 

Mato Grosso, from 2000 to 2016, in cooperation with EMBRAPA [5][14].  

5. Advances in the understanding and modelling of tropical forest 

degradation [1][3][17][48] 

6. Development of methods for space-time segmentation of satellite images 

[20]. 

7. Production of data sets and ground studies which are useful for 

validating multi-temporal land use classification methods [5] [13] [35]. 

8. Evaluation of existing land cover classifications to serve as baseline for 

the results of the e-sensing project [19][30]. 

9. Evaluation of smoothing methods on Landsat-8 EVI time series for crop 

classification based on phenological parameters [28]. 

10. Initial development of a multitemporal approach for land use mapping 

using Bayesian Networks [38].  

 Overall, the project is progressing as expected. During the third year, the 

team has made significant progress on land user and land cover change 

classifications, using advanced data analysis methods. 
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3 Detailed description of the results in Year 3 (2017) 

This section describes the results of the project in 2016. In the presentation, we 

follow the project organization in three work packages (WP), and associated 

milestones, as laid out in the proposal: 

1. WP 1 – Databases: research and development associated with using array 

databases to store large Earth observation data sets and developing 

workflows and methods for efficient storage, access and processing of 

large data, reproducibly.  

2. WP 2 – Data analysis: R&D on spatiotemporal techniques for extracting 

change information on large Earth observation data sets, relevant for 

forestry applications; include novel time series applications for remote 

sensing data, and combined time series and multi-temporal image 

processing. 

3. WP 3 – Use case development: case studies of forestry and agriculture 

applications that use large Earth observation data sets. These use cases 

will validate the methods and data developed by the other work 

packages.  

 To help the review of this report, we first present the table of milestones 

presented in the project proposal. We will then consider each the proposed 

milestones, stating whether it has been fulfilled or delayed.  

 For each milestone, we preview the result more directly associated with it. 

The rest of the results of the project can be found in the References section. All of 

the papers published by members of the research teams that are associated to the 

project are available at the project’s website: http://www.esensing.org. 
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TABLE 1 

PLANNED MILESTONES: RESULTS AFTER MONTH 24 

Green background Target was met 

Yellow background Target was partially met 

Red background Target was delayed  

Blue background New task  

White background For later years 

 

TASK Month 12 Month 24 Month 36 Month 48 

T1.1  

Building big EO 

databases  

M1.1.1.  

V1 of the 

database for use 

cases in Brazil  

M1.1.2  

V2 of database for 

use cases in Brazil  

M1.1.3 

V3 of database 

for use cases in 

Brazil 

M 1.1.4  

V4 of database 

for regional use 

cases 

T1.2  

Extend SciDB for 

geographical 

data handling  

M1.2.1 

Integration of 

TerraLib and 

SciDB 

M1.2.2 Algorithms 

for SciDB server-

side processing 

M1.2.3  

Web service for 

SciDB server-

side processing 

M1.2.4 

Extension of 

SciDB as a 

spatial data 

manager    

T2.1   

Exploratory big 

data analysis 

 M2.1.2 Interactive 

environment for 

data exploration 

M2.1.3 

Interactive 

environment for 

collaborative 

analysis 

M2.1.4 Large-

scale sharing 

with other 

research teams  

T2.2  

Data analysis for 

big EO data  

M2.2.1  

R-Big-EO time 

series analysis 

software (V1) 

M2.2.2  

R-Big-EO time 

series analysis 

software (V2) 

M2.2.3  

R-Big-EO space-

time analysis 

software (V1) 

M2.2.4  

Big-EO space-

time analysis 

software (V2) 

T3.1  

Tropical forest 

change 

M3.1.1 

Identification 

and selection of 

areas 

M3.1.2 Preliminary 

detection of clear 

cut and 

degradation 

M3.1.3 Detection 

of clear cut and 

degradation 

M3.1.4 

Assessment of 

forest change 

alert methods  

T3.2  

Tropical 

agriculture 

mapping 

M3.2.1 

Identification 

and selection of 

areas 

M3.2.2 Mapping of 

soybeans, maize 

and sugarcane 

M3.2.3 Mapping 

agriculture in 

Cerrado and 

Amazonia 

M3.2.4 

Assessment of 

agricultural 

mapping 

methods 
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3.1 Progress report on WP 1 - Big Earth observation databases 

3.1.1   Task 1.1 - Building and deployment of big Earth observation databases 

to support data analysis and use cases 

 This task builds databases to be used by the project. In the proposal, we set 

the following milestone for month 24: 

Milestone M1.1.3 – V3 of database for regional use cases in Brazil 

The target of this milestone was to build a large remote sensing database 

containing the data needed for the use cases in Brazil in year 4.  This result has 

been achieved. This target was already met at the end of year 2, as stated in the 

previous progress report.  

 At the end of year 3, we have loaded in the servers the following data sets: 

1. MODIS MOD09Q1 images at 250-meter resolution from 2000 to 2017 for 

the whole of South America, with 13,800 images associated to 3.11 x 

1011 (317 billion) different satellite image time series.  

2. Selected LANDSAT images at 30-meter resolution from 2000 to 2015 for 

selected areas of Amazonia, with 202 images associated to 200 million 

different satellite image time series. 

3.1.2   Task 1.2 – Extend SciDB for geographical data handling  

The purpose of this task was to use the array database SciDB for Earth 

observation applications. To do this, we need to develop methods that would 

allow us to process satellite image time series in SciDB.  

 In the Report for Year 2 (2016), we explained that the original goal was to  

use the TerraLib software library, developed by INPE, as a source of data types 

and algorithms for geographical data. Our plan was to include an interface for 

SciDB in TerraLib. However, we found out that this integration was not required 

to achieve our aims. This simplifies the design of the infra-structure and allows 

for easier reproducibility. Therefore, we decided to use web services as the 

primary interface for our big data analytical methods.  
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 For this reason, we decided to set the following milestone for month 36: 

Milestone M1.2.3 – Web services for SciDB server-side processing 

 The aim of this new milestone was to develop a series of methods for 
processing big EO data on array databases. The strategy chosen was to based on 
the following aims: 

1.  Analytical scaling: provide support for the full cycle of research, allowing 
algorithms developed at the desktop to run on big databases with minor 
changes.  

2.  Software reuse: allow researchers to adapt existing methods for big data 
with minimal reworking.   

3.  Collaborative work: enable results to be shared with the scientific 
community. 

4. Replication: encourage research teams to build their own infrastructure. 

 What we have envisioned was to use the R suite of statistical tools as the 
environment to develop our analytical methods. R is the lingua franca of data 
analytics. Using R, researchers can scale up their methods, reuse previous work, 
and collaborate with their peers. Our aim is to be able to execute the same script 
in both client and server side.  

 

Figure 1 – Interface for server-side processing of analytical methods.  

 On Year 3 of the project, we developed and tested different methods for 
processing R scripts using SciDB. For efficient server-side processing, we 
optimized the organization of the array database SciDB for time series data 
analysis. We found out that we could obtain efficient performance of big Earth 
observation data using SciDB server side processing (see Table 1). 
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Table 1 – Processing times of large data sets using R-SciDB 

 Case Study Area (km2) Measures Proc time (h) 

Mato Grosso 900,000 135 GB 6 

Cerrado 2,050,000 308 GB 13 

 We have been able to use the array database SciDB effectively for our 

processing. Table 1 shows the processing times required to classify 16 years of 

satellite image time series imagery for the state of Mato Grosso and the Cerrado 

biome in Brazil. This classification was done in 5 servers, each with 12 cores, 

2.4GHz, 96 GB of RAM, 16 TB of data storage, and the SciDB back-end. The 

quality of these results will further be explained when we discuss the Work 

Package 3 (WP3) later in this report.  

 However, the full development of this task was not completed. Building a 

Web Service for SciDB turned out to be harder than anticipated. SciDB is proven 

to be efficient for handling large Earth observation data sets. It lacks full support 

for client-server access, since it does not have a user authentication facility. 

Additionally, the development of a Web service would require the conception of 

a protocol that would lead to differences in the code run in the server and that 

run in the client. 

 Therefore, in the end of Year 3, we decided that including the access to 

SciDB inside an R package would be better than developing a Web service. 

Therefore, this task has been merged with task 2.2 (see below). We consider that 

having a robust R package capable of doing both client-side and server-side 

processing would fit our requirements better.  
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3.2  Progress report on WP 2 - Data analysis for big Earth observation data 

3.2.1 Task 2.1 – Web-based exploratory big data analysis  

 In our original proposal, we envisaged making an integration between 

SciDB, TerraLib and the R software. However, during the development of the 

project we found out that this interface would not be required to achieve our 

goals of building an efficient set of software for space-time analysis. Instead, we 

have developed a web-based interface exploratory big data analysis. The 

exploratory data analysis interface, developed in Year 2 of the project is shown in 

Figures 2. We consider that this task has been sufficiently achieved, and no new 

development were required in Year 3. 

 

Figure 2 – Web-based exploratory big EO data analysis interface. In the left, there is a 

window allowing the user to select a training sample for later use in classification. In the 

right, the result of a classification of a point using the TWDTW algorithm is shown 

(source: e-sensing team). 

 The interfaces use the Web Time Series Service (WTSS, described in the 

Year 2 report) to obtain time series data. The user can then analyse the data using 

the methods available in the sits R package, developed by the project team (see 

section 3.2.2 below).  
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3.2.2 Task 2.2 - Space-time analysis of big Earth observation data for land 

change monitoring – Part 1: The SITS package 

 This task aims to develop new methods for space-time analysis of big Earth 

observation data. It is expected to produce new research results, since it will be 

the first time that EO scientists have full access to large data sets to validate their 

data analysis methods.  

 In this task, the project proposal set the following milestone for month 36: 

Milestone M2.2.3: R-Big-EO space-time series analysis software 

 This milestone has been achieved. In the end of Year 2, we had developed a 

collection of tools for analysis of space-time. In Year 3, we decided to bring all 

these packages together in a single R package called sits. A large part of our 

work on Year 3 has been spent on the development of this package.  

 The sits package (“Satellite Image Time Series”) includes data retrieval 

from a WTSS (web time series service)1, different visualization methods for 

image time series, smoothing methods for noisy time series, different clustering 

methods, including dendrograms and SOM. It matches noiseless patterns with 

noisy time series using the TWDTW2 method for shape recognition and provides 

machine learning methods for time series classification.  

 To our knowledge, sits is the first R package that provides a unified 

support for many advanced data analysis methods for image time series. It is also 

the first to support advanced methods such as deep learning for time series 

classification. 

                                                 

1 The WTSS (Web-Time Series Service) was one of the important results of Year 2 of the project 

and has been described in more detail in the Year 2 report. See also Vinhas et al., “Web 

Services for Big Earth Observation Data.” In: GEOINFO 2016. Sao Jose dos Campos: 

INPE/SBC, 2016. v.1. p.166 – 177. 

2 The TWDTW (Time-weighted Dynamic Time Warping) is another important result of the e-

sensing project that has been discussed in Year 2 report. See also Maus et al, “A Time-

Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping”. IEEE 

JSTARS, vol. 9(8): 3729-3739, 2016. DOI: 10.1109/JSTARS.2016.2517118. 
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 The development of methods for clustering and machine learning were the 

most important results of the sits package in Year 3. Clustering is a way to 

improve training data to use in machine learning classification models. In this 

regard, cluster analysis can assist the identification of structural patterns and 

anomalous samples. The package support for the agglomerative hierarchical 

clustering (AHC) using the DTW (dynamic time warping) distance measure. As 

an example, Figure 5 shows the result of a dendrogram applied to 746 samples of 

land cover in Mato Grosso, divided in two classes (“Cerrado” and “Pasture”). 

From the dendogram, one can see that most of the samples form tight clusters, bu 

there are some outlines. These are some samples of “Pasture” that are more 

similar to those of “Cerrado” than to the class they were originally labelled.  

Based on the dendrogram, the sits package provides functions to find the 

optimal number of clusters and to remove outliers, thus generating homogenous 

clusters that can be used for classification.  

 

Figure 3 – Dendrogram produced by the sits R package 

 The machine learning methods in sits allow users to explore the full depth 

of satellite image time series data. The analysis techniques treat time series as a 

feature vector, made by taking all values of all pixels. The idea is to have as many 

temporal attributes as possible, increasing the dimension of the classification 

space. In this scenario, statistical learning models are the natural candidates to 

deal with high-dimensional data: learning to distinguish all land cover and land 

use classes from trusted samples exemplars (the training data) to infer classes of 

a larger data set. 
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 The methods available for machine learning in sits include3: 

• Support vector machine (svm): a classifier that uses linear and non-linear 

mapping of the input vectors into high-dimensional spaces, building 

hyperplanes that allow distinguishing between the data classes.  

• Random Forest (rfor): ensemble learning method for classification, that 

works by building a multitude of decision trees at training time.  

• Linear Discriminant Analysis (lda): a method that finds a linear combination 

of features that characterizes or separates the desired classes. 

• Quadratic Discriminant Analysis (qda): A methods that separate 

measurements of two or more classes of objects by a quadric surface.  

• Multinomial logistic regression (mlr): method that generalizes logistic 

regression to multiclass problems. It does not assume statistical 

independence of the input random variables.  

• Deep learning using multilayer perceptrons (dl-mlp): A method that uses a 

cascade of multiple layers of neural networks with nonlinear processing 

units for feature extraction and transformation.  

 To compare the performance of these methods, we used a data set with 

11.743 samples of 11 classes for the Brazilian Cerrado biome. The classes include 

natural vegetation (“Tropical Forest”, “Cerrado strictu sensu”, “Cerrado campo”, 

“Cerrado rupestre”) and agricultural classes (“Pasture”, “Soy-Fallow”, Soy-Corn”, 

“Soy-Millet”, “Soy-Cotton”, “Crop-Cotton”, “Millet-Cotton”). We obtained these 

samples in cooperation with EMBRAPA and by the team project members, most 

notably Dr. Ieda Sanches and Dr. Rodrigo Bergotti.  

 Table 2 shows a performance comparison of the classifiers for the Cerrado 

data set. This assessment was done using cross-validation to estimate the 

expected prediction error. We ran 5 trials. In each trial, 80% of the samples were 

used to train the classifier and 20% was set aside for testing. A simple average of 

the five predictions gives us an estimation of the expected prediction error. 

TABLE 2 

                                                 
3 For a description of SVM and other statistical learning methods, please see T. Hastie et al., The 

Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, NY, EUA, 2009. 

James et al, An Introduction to Statistical Learning: with Applications in R. Springer, New York, 

EUA, 2013. For a description of deep learning, please see Goodfellow et al., Deep Learning, 

Cambridge (MA), MIT Press, 2016 and Chollet and Allaire, Deep Learning in R, New York, 

Manning Pubs, 2018.  
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Performance of Classification Models for the Cerrado data set 

 

Class Accuracy Kappa Obs 

svm 96%  0.94 Radial kernel, cost = 10 

svm 95% 0.94 Radial kernel, cost = 100 

rfor 94% 0.915 No. of trees = 2000 

dl-mlp 93% 0.91 3 hidden layers (300, 200, 100 neurons), dropouts 

(0.4, 0.3, 0.2), “relu”activation, “adam”optimizer  

mlr 89% 0.859  

qda 89% 0.856  

lda 88% 0.83  

 The above results point out the high discriminatory power that is enabled 

by using all of the information in the time series. By contrast, many papers in the 

literature extract patterns or features from remote sensing data before applying 

machine learning methods. A typical way of working involves extracting 

features such as “start of growing season” and “peak of season” from remote 

sensing time series. These features are the inputs to machine learning classifiers4. 

The resulting accuracy is limited, as reported by previous work by the project 

team and in the scientific literature. The main reason for these unexceptional 

results is the loss of information involved, when part of the original data is 

discarded. Such choices are not required by the new generation of machine 

learning classifiers. These classifiers are robust and require large data sets.  

 The approach taken in the sits package is different:  use all the data available.. 

The fact that different classifiers (svm, random forest, deep learning) are able to 

obtain high accuracy with the same data set shows that the quality and quantity 

of the sample sizes are the controlling factors in the classification performance. 

Even less sophisticated algorithms such as quadratic discriminant analysis can 

reach close to 90% accuracy in data of a large sample size. Therefore, we can 

conclude that having good samples is the key for obtaining good results in 

satellite image time series classification.  

                                                 
4 See the review of the topic: Atzberger, C. “Advances in remote sensing of agriculture: Context 

description, existing operational monitoring systems and major information needs”, Remote 

Sensing 5(2):949--981, 2013 
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 One further point that might be of interest is the comparison of 

discriminative power between the three best classifiers (svm, rfor, dl-mlp). Table 

2 below shows the detailed results for each class. 

TABLE 3 

Discriminative Power of Machine Learning Classifiers for the Cerrado Data Set 

 

 Reliability Accuracy 

Class svm rfor dl-mlp svm rfor dl-mlp 

Forest 96% 98% 93% 99% 99% 99% 

Cerrado strictu sensu 89% 94% 81% 77% 62% 63% 

Cerrado campo 92% 85% 89% 97% 98% 94% 

Cerrado rupestre 98% 95% 93% 97% 95% 97% 

Fallow-Cotton 95% 94% 91% 99% 94% 93% 

Millet-Cotton 99% 99% 91% 98% 90% 88% 

Pasture 95% 94% 93% 95% 86% 94% 

Soy-Corn 97% 94% 96% 97% 97% 95% 

Soy-Cotton 97% 96% 94% 97% 95% 96% 

Soy-Fallow 99% 92% 97% 99% 93% 99% 

Soy-Millet 77% 45% 69% 82% 85% 57% 

 In the above table, the column reliability (“user’s accuracy”) shows the 

probability that a pixel labeled as a certain land-cover class in the map is really 

this class. The figures in column accuracy (also known as “producer's accuracy”) 

refer to the probability that a certain land-cover of an area on the ground is 

classified as such. When looked in detail, we note that the svm classifier has a 

better discriminating power than rfor and dl-mlp. However, this result cannot be 

generalized. Considering that deep learning methods have a large number of 

meta-parameters, the deep learning method used in the comparison is only one 

of many possible. Indeed, for each given data set, it is theoretically possible to 

fine tune a deep learning architecture that matches the performance of the svm. 

However, such fine tuning requires considerable time and resources, as well as a 

good understanding of the theory behind deep learning methods. Thus, we can 

state a rule-of-thumb for good satellite image time series classification is simple: 

first, obtain a large sample size of very good quality; then, use all the data available. If 

possible, compare the performance of the advanced classifiers (svm, rfor, deep learning) 

and choose the one that best discriminates your data. If pressed by time or resources, use a 

support vector machine. 
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3.2.3 Task 2.2 - Space-time analysis of big Earth observation data for land 

change monitoring – Part 2: Spatiotemporal calculus for reasoning about 

land use change dynamics 

 A second relevant result in WP 2 was the proposal and development of a 

spatiotemporal calculus for reasoning about land change dynamics [2][15]. When 

analyzing Earth observation data, scientists are particularly interested in land use 

trajectories, which are paths from one land use into another. Typical questions 

researchers would like to ask are: Which forest areas were degraded from 2000 to 

2017? When did new agricultural systems such as double-cropping were introduced in 

the regions? Which area changed for pasture to croplands in the past decade? To allow 

researchers to reason about these and similar change, we propose a land use 

change calculus (LUC Calculus), composed of the following primitives: 

1.  The interval temporal predicates proposed by Allen5.  

2.  The additional predicates FOLLOWS and PRECEDES for comparing time 

intervals. 

3.  The new set of predicates RECUR, CONVERT and EVOLVE for reasoning 

on composition of land use transitions.  

 Using these predicates, we can express complex queries about land use 

change trajectories.  One example is distinguishing secondary vegetation from 

mature forest. Mature forests have high biomass and biodiversity, and have not 

been affected by recent human actions. Secondary vegetation areas are places 

where the original forest was cut and the area was later abandoned. After a few 

years, these areas will appear in remote sensing images as forests. However, their 

biodiversity and biomass is much smaller than that of a mature forest. Thus, it is 

important to identify areas of secondary vegetation, even though they appear to 

be mature forest. 

 As an example, we classified the different types of land use in the 

municipality of Itanhangá (MT), from 2001 to 2016 (see figure 4). We use the full 

history of the area considered as a set of land use change trajectories. For an area 

to be singled out as secondary vegetation, its initial state is classified as “Forest”. 

Then the area is converted to pasture or cropland, and later abandoned so that 

the forest regrows. Table 4 shows the logical expression used to uncover areas of 

secondary vegetation, and Figure 5 presents the total area of secondary 

                                                 
5 J. F. Allen.  Maintaining knowledge about temporal intervals. Communications of the ACM, 

26(11):832–843, 1983 
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vegetation since 2002. Results show that a significant portion of the deforested 

area was abandoned and has regrown as a forest. This result points out to the 

predatory nature of deforestation in Amazon. Farmers sometimes cut mature 

forest and cannot sustain a profitable economic activity in these areas. Using the 

expressive power of the LUC Calculus, these transitions can be highlighted and 

better understood. 

  

Figure 4 – Land use in Itanhangá, MT, Brazil, from 2001 to 2016 

Table 4 

LUC Calculus expression to find areas of secondary vegetation 
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Figure 5 – Total area of forest and secondary vegetation in Itanhangá from 2001 to 2016. 

 

3.2.4 Task 2.2 - Space-time analysis of big Earth observation data for land 

change monitoring – Part 3: Space-time segmentation 

A third relevant result in WP 2 was the initial development of methods for space-

time segmentation In [20], the authors propose a new segmentation method 

applied to time series of Earth Observation data. The method integrates regions 

in order to detect objects that are homogeneous in space and time. This approach 

aims to overcome the limitations of the snapshot model. Study cases were 

conducted using time series of MODIS and Landsat-8 OLI scenes by applying 

spatio-temporal segmentation using the Dynamic Time Warping measure as the 

homogeneity criterion. 

 The algorithm can be expressed by the following steps: 

a)    Select a sequence of images as input data. 

b) Determine the number and location of the seeds at the image. 

c)    Compute DTW distance between the time series of the seeds and their 

neighbors. Similar neighbors are added to the region. 

d) Continue examining all the neighbors until no similar neighbor is found. 

Label the obtained segmented as a complete region. 
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e)    Observe the next unlabelled seed and repeat the process until all the seeds 

or pixels are labelled in a region. 

 The core of the method is to use DTW measure as the homogeneity criterion 

for growing regions in the study cases. These time series were used in DTW 

calculation between the seeds and its neighbouring pixels. The method was 

tested on MODIS NDVI and LANDSAT-8 and the results are encouraging [20]. In 

Year 4 of the project, we expect to further explore this topic. 

3.3 Progress report on WP 3 -  Use case development 

3.3.1    Task 3.1 - Specification and validation of tropical forest change alert 

methods and data 

 Our use cases address two important problems: (a) how to use time series 

and spatiotemporal analysis to support the DEGRAD system of monitoring 

forest degradation; (b) how to use time series data to support the PRODES 

system for yearly assessments of tropical forest loss. Our aim is not to replace 

INPE’s existing systems, but to explore how automated methods can 

complement and enhance them. In years 1 and 2, we did a lot of work on forest 

degradation, which is the most pressing and tougher scientific challenge. In this 

task, the project proposal has the following milestone for month 36: 

Milestone M3.1.3:  Detection of clear cut and degradation 

 This milestone has been accomplished. In this task, we have developed a 

methods for detecting forest degradation [3][17][47]. Forest degradation is 

defined as defined as the long-term and gradual reduction of canopy cover due to forest 

fire and unsustainable logging. Typically, a mature forest is degraded when part of 

its tree cover is removed. In the Brazilian Amazonia, degradation is caused by 

either unsustainable logging practices or by forest fires (intentional or 

uncontrolled).  Understanding and identifying forest degradation is important, 

because it causes carbon emissions that have to be accounted for and leads to a 

loss of biodiversity caused by removal of important species. Also, degradation 

often (but not always) is associated to later actions that cause the full removal of 

forest cover (deforestation).  
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 In Year 3, we carried out a detailed study on how to perform semi-

automatic classification of forest degradation using LANDSAT-8 images.  The 

method has the following steps: 

a)   Classify each image using a spectral mixture model, producing an index 

image that combines the soil and vegetation fractions.  

b) Identify and map on the resulting image features associated to forest 

degradation. These features include the presence of areas for wood 

storage, corridors for transportation, and fire scars.  

c)    Perform a structural classification of degradation patterns using the 

GeoDMA6 with 1 Km2 cells. The structural classifier use landscape metrics 

and decision trees.  

   

 

Figure 4 – Gradients of forest degradation intensity for year 2014 for Sinop, MT. The 

higher the index, the stronger the degradation. Source: [6]. 

                                                 
6 TS Körting, LMG Fonseca, G Câmara, GeoDMA—Geographic data mining analyst.  Computers 

& Geosciences, 2013. This algorithm was developed by the project team on a previous FAPESP 

thematic project.  
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The classification accuracy was 96%, measured by comparing with ground 

samples. The method enabled the production of spatial gradients of forest 

degradation (see Figure 4). The results show that this approach, considering the 

intensity of the degradation, can be replicated in temporal studies of analysis of 

forest landscape conditions. Since each cell is fixed unit in time and space, it is 

possible to measure the variation of degradation in space and time.  

 

3.3.2  Task 3.2 - Specification and Validation of Tropical Agriculture 

Monitoring Methods and Data 

 In this task, the project proposal has the following adjusted milestone for 

month 36: 

Milestone M3.2.2:  Mapping agriculture in Cerrado and Amazonia 

 This milestone has accomplished, led by the post-doc selected by project, 

Dr. Michelle Picoli, who has a PhD in Agricultural Engeneering from Campinas 

State University (UNICAMP) and has also worked in CTBE (Bioethanol 

Technology Centre). Dr. Picoli joined the project at the start of 2017.  

 The main work in this Task was the development of innovative methods for 

using satellite image time series to produce land use and land cover classification 

over large areas in Brazil from 2001 to 2016[5][14]. We used MODIS time series 

data to classify natural and human-transformed land areas in state of Mato 

Grosso, Brazil's agricultural frontier. Using the sits R package (see Section 3.2.3 

above), we took the full depth of satellite image time series to create large 

dimensional spaces for statistical classification.  Data consists of MODIS 

MOD13Q1 time series with 23 samples per year per pixel, and 4 bands (NVDI, 

EVI, nir and mir). By taking a series of labelled time series, we fe a support vector 

machine model with a 92-dimensional attribute space. Using a 5-fold cross 

validation, we obtained an overall accuracy of 94% for discriminating among 9 

land cover classes: forest, cerrado, pasture, soybean-fallow, fallow-cotton, soybean-

cotton, soybean-corn, soybean-millet and soybean-sunflower. Producer’s and user’s 

accuracies of all classes were close to or better than 90%.  

 The results point out to important trends in agricultural intensification in 

Mato Grosso. Double cropping systems are now the most common production 

system in the state, thus increasing the potential for land sparing. Pasture 

expansion and intensification has been less studied than crop expansion, 

although it has a stronger impact on deforestation and GHG emissions. Our 
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results points to a significant increase in stocking rate in Mato Grosso, and to the 

possible abandonment of pasture areas opened in the state's frontier. The 

detailed land cover maps contribute to the assessment of the interplay between 

production and protection in the Brazilian Amazonian and Cerrado biomes. Two 

of the resulting classification maps for Mato Grosso (in 2005 and 2016) are shown 

in Figure 5.  

 

Figure 5 – Land use and land cover classification for Mato Grosso (2005 and 2016). 

 Among the many significant results we obtained by analyzing the resulting 

data set, we highlight the change in stocking rate. According to our classification, 

pasture area in Mato Grosso between 2005 and 2015 declined 4.6 million hectares, 

from 28.1 to 23.5 million hectares.  According to IBGE, the number of cattle heads 

in the state has increased from 26.7 in 2005 to 29.3 million in 2015, a growth of 

10%.  In Figure6, we join our results with IBGE data in cattle herds to show that 

the stocking rate in Mato Grosso has grown steadily. The cattle heads grew by 

10%, while pasture decreased by 16% between 2005 and 2015. This is a significant 

result, because it shows that the relative pressure of cattle raising for increasing 

deforestation is being reduced. In general, there is a trend towards pasture 

intensification coupled with abandonment of frontier areas, especially those at 

the most Northern part of the state. 
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Figure 6 – Change in stocking rate (number of heads of cattle divided by pasture area) 

from 2005 to 2016 in Mato Grosso.  

 In Year 4 of the project, we intend to produce complete land use and land 

cover maps for the whole of Brazil, covering the main biomes.  

4  Institutional support received in the period 

The e-sensing project is hosted primarily by the Image Processing Division (DPI) 

of the National Institute of Space Research (INPE), with additional support 

provided by INPE’s Remote Sensing Division (DSR). Both divisions report to the 

Earth Observation Directorate (OBT). During year 1 of the project, DPI gave 

substantial institutional support to the project, led by its head (Dr. Lubia Vinhas) 

as follows: 

1. DPI/INPE hired, with additional funds from other projects, a full-time 

post-doc researcher (Dr. Eduardo Llapa) who is 100% dedicated to the 

project.  

2. DPI/INPE also hired, with additional funds from other projects, a project 

support person (Ms. Denise Nascimento) who provides essential 

support for project management. 

3. DPI/INPE also provides the IT infrastructure for hosting the data servers 

bought by the project with support from FAPESP, and for hosting the 

project’s website (http://www.esensing.org).  

 The institutional support we are receiving from DPI/INPE is very good and 

fulfills the needs of the project. 
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5 Activities planned for project year 4 (January – December 2018)  

5.1  Planned activities for WP 1 - Big Earth observation databases 

5.1.1 Task 1.1 - Building and deployment of big Earth observation databases to 

support data analysis and use cases 

 Milestone M1.1.4  - Version 3 of the database for regional use cases (month 42) 

This milestone will consist of loading in the database the data for the use 

cases to be done in year 4. In this case, we expect to include a significant 

number of LANDSAT images to complement the MODIS data that has been 

already inserted in the SciDB array manager. This data set will include 

images for Latin America, including Bolivia, Peru and Argentina. 

5.1.2 Task 1.2 – Extend SciDB for geographical data handling  

 Milestone M1.2.4 – Server-side processing of time series classification learning 

methods using the sits package (month 48) 

Given the problems we faced when developing a Web Service based on the 

SciDB array database, we are reviewing the original milestone (as explained 

in Section 3.1.2) and merging this goal with Task 2.2 (see below)  

5.2  Planned activities for WP 2 - Data analysis for big Earth observation data 

5.2.1 Task 2.1 - Exploratory big data analysis 

As explained above, this task has been consider as having been completed 

at the end of Year 2. No further work on the task is considered to be 

required.  

5.2.2 Task 2.2 – Space-time analysis of big Earth observation data for land 

change monitoring 

 Milestone M2.2.4:  Complete version of sits R package (month 36) 

As explained above, we decided to focus our software development effort 

in a single R package, called sits. Currently, as explained in Section 3.2.2, 

the package has a large set of clustering, filtering and machine learning 

methods. It has been successfully applied to the classification of agricultural 

areas (see Section 3.3.2). Currently, the server-side processing facilities that 
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use the SciDB data base are still not integrated in the package. In line with 

what we explained in Section 5.1.2, we will integrate client-side and server-

side processing in sits. We also aim to include methods for detection of 

forest degradation (developed in Task 3.1) in the package, thus ensuring 

that all important conceptual advances in Forestry and Agriculture 

produced by the project can be reproduced.  

5.3  Planned activities for WP 3 - Use case development 

5.3.1 Task 3.1 - Specification and validation of tropical forest change alert 

methods and data 

 Milestone M3.1.4 Inclusion of detection of clear cut and degradation in the sits R 

package (month 48) 

As explained above, the important efforts of mapping and identifying areas 

of forest degradation have not yet been integrated in the R sits package. In 

year 4, we intend to put together the software experts and forest experts of 

the project team. The result will be the availability of methods for detection 

of forest degradation in the sits package.   

5.3.2 Task 3.2 - Specification and Validation of Tropical Agriculture 

Monitoring Methods and Data 

 Milestone M3.2.4 Full mapping of agriculture in selected Brazilian biomes (month 

48) 

To finish the project, in Year 4, we intend to produce a map of  agricultural 

areas in selected Brazilian biomes. We intend to provide a full cropland and 

pastureland map of the Amazonia and Cerrado biomes, and a map of 

selected areas in other biomes.  
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6 Data Management Policy  

 We are following the policy we stated in the project proposal, as follows: 

 Our policy will be to deal with the databases and software created by this project as 

a resource to be shared with the Brazilian Earth Observation community. Thus, we will 

open the database after month 24 of the project to the community. We will encourage 

scientists to develop new data analysis methods and to use the methods and algorithms 

we will build to develop new applications. We will maintain the database accessible and 

updated for long-term use by the scientific community.  

 During 2017, we undertook the following actions regarding implementing 

the proposed data management policy: 

a)  We established a partnership with the EMBRAPA Centre for Agricultural 

Informatics (CNPTIA), so that their experts are now using the sits package 

to produce their own applications on agricultural mapping. We held a 

training course on sits for EMBRAPA on September 2017.  

b) We visited the research group on Remote Sensing at the University 

Federal de Goiás, led by prof. Laerte Ferreira. We established a 

partnership to allow them to use early releases of sits R package for their 

studies.  

 In our contacts with other Brazilian research groups, we found out that they 

have developed a good capacity of putting big data sets together as large sets of 

flat files. They told us they would rather use their existing data sets than having 

access to INPE’s database. For this reason, we have included in the sits R package 

the capacity to perform classification on large sets of flat files. This feature is 

already part of the current open source version. The team at EMBRAPA has 

informed us that they are using it with success.  
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7 Final Remarks 

The “e-Sensing” project has achieved important results in Year 3. The 

development of machine learning methods for satellite image time series analysis 

has been a major development in 2017. The other important result was the 

development of an R package that will encapsulate the most important project 

advances. These results will allow INPE and other research groups in Brazil to to 

produce new maps of land use change in Brazil. These maps will allow new 

insights into the trade-offs between environmental protection and agricultural 

production in Brazil.  

 As we remarked in the Year 1 Report, another important, although 

intangible result, was to have built an interdisciplinary approach to the problem 

of big Earth observation data handling. We held frequent seminars and 

workshops with the full project team, so that researchers could present their 

different viewpoints. It has been vitally important to have such discussions. As a 

result, all team members have deepened their understanding of the complex 

problem we will try to solve in the coming years. 

  



e-sensing: report for year 3 (2017) 

 

 

 

27 

8 PAPERS, SOFTWARE AND DATA PUBLISHED IN 2017 

DOCTORAL DISSERTATIONS 

1. MÁRCIO AZEREDO. Mineração e análise de trajetórias de mudança de cobertura da 

terra: explorando padrões comportamentais no contexto da degradação florestal. 

Doctoral dissertation in Applied Computing, INPE, 2017. Advisors: ISABEL 

ESCADA, MIGUEL MONTEIRO. 

2. ADELINE MACIEL, Spatiotemporal Interval Logic for Reasoning About Land Use 

Change Dynamics. Doctoral dissertation in Earth System Science, INPE 

2017. ADVISORS: LUBIA VINHAS, GILBERTO CÂMARA. 

 

MASTER THESIS 

3. VINICIUS CAPANEMA. Fatores de Degradação Florestal Atuantes em diferentes 

estágios da fronteira agropecuária na Amazônia: Estudo de caso na região de 

Sinop, MT. 2017. MSc in Remote Sensing. INPE 2017. Advisor: ISABEL ESCADA. 

4. ALANA KASAHARA NEVES. Mineração e dados de sensoriamento remoto para 

detecção e classificação de áreas de pastagem na Amazônia Legal. 2017. MSc in 

Remote Sensing. INPE 2017. Advisor: THALES KÖRTING.  

DATA SETS SUBMITTED TO PUBLIC REPOSITORIES 

5. GILBERTO CÂMARA, MICHELLE PICOLI, ROLF SIMOES, ADELINE MACIEL, ALEXANDRE 

CARVALHO, ALEXANDRE COUTINHO, JULIO ESQUERDO, JOÃO ANTUNES, RODRIGO 

BEGOTTI, DAMIEN ARVOR (2017): Land cover change maps for Mato Grosso State 

in Brazil: 2001-2016, links to files. PANGAEA, 

https://doi.org/10.1594/PANGAEA.881291 

 

SOFTWARE PACKAGES DEVELOPED 

6. ROLF SIMÕES, GILBERTO CÂMARA, ALEXANDRE CARVALHO, VICTOR MAUS. SITS: 

Satellite Image Time Series Analysis. R package available at https://github.com/e-

sensing/sits. 

7. LUIZ ASSIS, GILBERTO RIBEIRO, VICTOR MAUS. wtss: An R Client for a Web Time-

Series Service. Available at https://CRAN.R-project.org/package=wtss  

8. ADELINE MACIEL, lucC: Land Use Change Calculus. R package available 

at https://github.com/ammaciel/lucC.  
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PAPERS PUBLISHED IN INTERNATIONAL JOURNALS 

9. MARIANE REIS, LUCIANO DUTRA, ISABEL ESCADA. Examining Multi-Legend Change

Detection in Amazon with Pixel and Region Based Methods. Remote Sensing, v. 9,

p. 77, 2017. DOI:10.3390/rs9010077.

10. FABIEN WAGNER, BRUNO HERAULT, VIVIEN ROSSI, THOMAS HILKER, EDUARDO

MAEDA, ALBER SANCHEZ, ALEXEI LYAPUSTIN, LÊNIO GALVÃO, YUJIEWANG, LUIZ

ARAGÃO. Climate drivers of the Amazon forest greening. PLOS One, 12(7):

e0180932. DOI: 10.1371/journal.pone.0180932.

PAPERS ACCEPTED IN INTERNATIONAL JOURNALS 

11. DENISE MARTINI, LUIZ ARAGÃO, IEDA SANCHES, MARCELO VALADARES, CINTHIA

SILVA, ELOI DALL-NORA.  Land availability for sugarcane derived jet-biofuels in

São Paulo—Brazil. Land Use Policy, vol.70, pp. 256-262 (January 2018).

12. VICTOR MAUS, GILBERTO CÂMARA, EDZER PEBESMA, MARIUS APPEL. dtwSat: Time-

Weighted Dynamic Time Warping for Satellite Image Time Series Analysis in R.

Accepted by the Journal of Statistical Software.

13. IEDA SANCHES, RAUL FEITOSA, PEDRO DIAZ, MARINALVA SOARES, ALFREDO LUIZ,

BRUNO SCHULTZ, LUIS MAURANO. Campo Verde Database: Seeking to Improve

Agricultural Remote Sensing of Tropical Areas. Accepted for publication in IEEE

Geoscience and Remote Sensing Letters.

PAPERS SUBMITTED TO INTERNATIONAL JOURNALS

14. MICHELLE PICOLI, GILBERTO CAMARA, IEDA SANCHES, ROLF SIMÕES, ALEXANDRE

CARVALHO, ADELINE MACIEL, ALEXANDRE COUTINHO, JULIO ESQUERDO, JOÃO

ANTUNES, RODRIGO BEGOTTI, DAMIEN ARVOR, CLAUDIO ALMEIDA. Big Earth

Observation Time Series Analysis for Monitoring Brazilian Agriculture.

Submitted to ISPRS Journal of Photogrammetry and Remote Sensing (under review).

15. ADELINE MACIEL, GILBERTO CÂMARA, LÚBIA VINHAS, MICHELLE PICOLI, RODRIGO

BEGOTTI, LUIZ ASSIS. Spatiotemporal interval logic for reasoning about land use

change dynamics. Submitted to Inter. Journal of Geographical Information Science

(2nd revision).

PAPERS PUBLISHED IN BRAZILIAN JOURNALS 

16. RENNAN MARUJO, LEILA FONSECA, THALES KORTING, HUGO BENDINI, GILBERTO

QUEIROZ, LÚBIA VINHAS, KARINE FERREIRA. Remote Sensing Image Processing
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Functions in Lua Language. Accepted for publication in Journal of Computational 

Interdisciplinary Sciences, 2018. 

 

PAPERS ACCEPTED IN BRAZILIAN JOURNALS 

17. VINICIUS CAPANEMA, TAISE PINHEIRO, ISABEL ESCADA, SIDNEY SANT’ANNA. 

Mapeamento de Padrões de Intensidade de Degradação Florestal: Estudo de caso 

na Região de Sinop, Estado do Mato Grosso. Revista Brasileira de Cartografia. 

Submitted and accepted in 2017. 

 

PEER-REVIEWED PAPERS IN SCIENTIFIC CONFERENCES 

18. VITOR GOMES, GILBERTO QUEIROZ, KARINE FERREIRA, LUCIANE SATO, RAFAEL 

SANTOS, FABIANO MORELLI. Um ambiente para análise exploratória de grandes 

volumes  de dados geoespaciais: explorando risco de fogo e focos de queimadas. 

Anais do 18o. Simpósio Brasileiro de Geoinformática", GEOINFO 2017. Salvador, 

04-06 dez. 2017.  

19. ALANA NEVES, THALES KORTING, LEILA FONSECA, GILBERTO QUEIROZ, LÚBIA 

VINHAS, KARINE FERREIRA, ISABEL ESCADA. TerraClass x MapBiomas: Comparative 

assessment of legend and mapping agreement analysis. Anais do 18o. Simpósio 

Brasileiro de Geoinformática", GEOINFO 2017. Salvador, 04-06 dez. 2017. 

20. WANDERSON COSTA, LEILA FONSECA, THALES KORTING, MARGARETH SIMÕES, HUGO 

BENDINI, RICARDO SOUZA. Segmentation of optical remote sensing images for 

detecting homogeneous regions in space and time. Anais do 18o. Simpósio 

Brasileiro de Geoinformática", GEOINFO 2017. Salvador, 04-06 dez. 2017. 

21. RENNAN MARUJO, LEILA FONSECA, THALES KORTING, HUGO BENDINI. Spectral 

normalization between Landsat-8/OLI, Landsat- 7/ETM+ and CBERS-4/MUX 

bands through linear regression and spectral unmixing. Anais do 18o. Simpósio 

Brasileiro de Geoinformática", GEOINFO 2017. Salvador, 04-06 dez. 2017. 

22. MARIANE REIS, LUCIANO DUTRA, ISABEL ESCADA. Simultaneous multi-source and 

multi-temporal land cover classification using a Compound Maximum 

Likelihood classifier. Anais do 18o. Simpósio Brasileiro de Geoinformática", 

GEOINFO 2017. Salvador, 04-06 dez. 2017. 

23.  ALBER SANCHEZ, LÚBIA VINHAS, GILBERTO QUEIROZ, ROLF SIMÕES, VITOR GOMES, 

LUIZ ASSIS, EDUARDO LLAPA, GILBERTO CAMARA. Reproducible geospatial data 

science: Exploratory Data Analysis using collaborative analysis environments. 

Anais do 18o. Simpósio Brasileiro de Geoinformática", GEOINFO 2017. Salvador, 

04-06 dez. 2017. 
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24. GILBERTO CAMARA, GILBERTO  QUEIROZ, LÚBIA VINHAS, KARINE FERREIRA, RICARDO 

CARTAXO, ROLF SIMÕES, EDUARDO LLAPA, LUIZ ASSIS, ALBER SANCHEZ. "The e-

Sensing  architecture for big Earth observation data analysis". Proc. of the 2017 

conference on Big Data from Space (BiDS 17). P. Soille and P.G. Marchetti (eds.). 

Toulouse, France, December 2017 

25.  ADELINE MACIEL, LUBIA VINHAS, GILBERTO CAMARA, VICTOR MAUS, LUIZ ASSIS. 

STILF - A spatiotemporal interval logic formalism for reasoning about events in 

remote sensing data. Anais do 18o. Simpósio Brasileiro de Sensoriamento 

Remoto, SBSR 2017. Santos, 28-31 maio 2017. ISBN= 978-85-17-00088-1.  

26. ADELINE MACIEL, LÚBIA VINHAS. Time series classification using features 

extraction to identification of land use and land cover: A case study in the 

municipality of Itaqui, South Region of Brazil. Anais do 18o. Simpósio Brasileiro 

de Sensoriamento Remoto, SBSR 2017. Santos, 28-31 maio 2017. ISBN= 978-85-17-

00088-1. 

27. LUBIA  VINHAS, MATHEUS ZAGLIA. Exploring the OpenSearch extension to 

disseminate Earth Observation Data. Anais do 18o. Simpósio Brasileiro de 

Sensoriamento Remoto, SBSR 2017. Santos, 28-31 maio 2017. ISBN= 978-85-17-

00088-1. 

28. HUGO BENDINI, LEILA FONSECA, THALES KORTING, IEDA SANCHES, RENNAN 

MARUJO. Evaluation of smoothing methods on Landsat-8 EVI time series for crop 

classification based on phenological parameters. In: Simpósio Brasileiro de 

Sensoriamento Remoto - SBSR, 2017, Santos. XVIII Simpósio Brasileiro de 

Sensoriamento Remoto - SBSR, 2017. p. 4267-4274.   

29. PEDRO DIAZ, RAUL FEITOSA, FRANZ ROTTENSTEINER, IEDA SANCHES, CHRISTIAN 

HEIPKE. Spatio-temporal Conditional Random Fields for recognition of sub-

tropical crop types from multi-temporal images. In: Simpósio Brasileiro de 

Sensoriamento Remoto - SBSR, 2017, Santos. XVIII Simpósio Brasileiro de 

Sensoriamento Remoto - SBSR, 2017. p. 2539-2546.  

30. JULIO GUERRA, BRUNO SCHULTZ, IEDA SANCHES. Mapeamento automático da 

expansão da agricultura anual no MATOPIBA entre 2002 e 2015 utilizando a 

plataforma Google Earth Engine. In: Simpósio Brasileiro de Sensoriamento 

Remoto - SBSR, 2017, Santos. XVIII Simpósio Brasileiro de Sensoriamento 

Remoto - SBSR, 2017. p. 6850-6857. 

31. ALFREDO LUIZ, IEDA SANCHES, MARCOS NEVES. Mudança no uso da terra pela 

agricultura brasileira de 1990 a 2014. In: Simpósio Brasileiro de Sensoriamento 

Remoto - SBSR, 2017, Santos. XVIII Simpósio Brasileiro de Sensoriamento 

Remoto - SBSR, 2017. p. 4002-4009. 
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32. RODOLFO MANJOLIN, CÉLIA GREGO, SANDRA NOGUEIRA, GUSTAVO BAYMA-SILVA, 

KLEBER TRABAQUIM, IEDA SANCHES. Variabilidade espacial da fertilidade, carbono 

e nitrogênio do solo em áreas de pastagem e cana-de-açúcar no estado de São 

Paulo. In: Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 2017, Santos. 

XVIII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 2017. p. 7163-7170.   

33. BRUNO MONTIBELLER, ALFREDO LUIZ, IEDA SANCHES, HILTON SILVEIRA. Análise da 

variabilidade espectro-temporal intraespecífica do milho. In: Simpósio Brasileiro 

de Sensoriamento Remoto - SBSR, 2017, Santos. XVIII Simpósio Brasileiro de 

Sensoriamento Remoto - SBSR, 2017. p. 2011-2018.  

34. HILTON SILVEIRA, ISAQUE EBERHARDT, IEDA SANCHES, LENIO GALVAO. Análise da 

cobertura de nuvens no nordeste do Brasil e seus impactos no sensoriamento 

remoto agrícola operacional. In: Simpósio Brasileiro de Sensoriamento Remoto - 

SBSR, 2017, Santos. XVIII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 

2017. p. 400-407.  

35. KLEBER TRABAQUINI, GUSTAVO SILVA, IEDA SANCHES, SANDRA NOGUEIRA, 

DENILSON DORTZBACH. Avaliação espaço-temporal da cultura da cana-de-açúcar 

no oeste paulista. In: Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 2017, 

Santos. XVIII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 2017. p. 

4764-4771.  

36. JOSE BERMUDEZ, RAUL FEITOSA, LAURA CUE, PEDRO DIAZ, IEDA SANCHES.  A 

Comparative Analysis of Deep Learning Techniques for Sub-Tropical Crop Types 

Recognition from Multitemporal Optical/SAR Image Sequences. In: 2017 30th 

SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2017, 

Niterói. 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images 

(SIBGRAPI), 2017. p. 382.  

37. JOSE BERMUDEZ, PEDRO DIAZ, IEDA SANCHES, LAURA CUE, RAUL FEITOSA. 

Evaluation of Recurrent Neural Networks for Crop Recognition from 

Multitemporal Remote Sensing Images. In: XXVII Congresso Brasileiro de 

Cartografia e XXVI Exposicarta, 2017, Rio de Janeiro. Anais do XXVII Congresso 

Brasileiro de Cartografia e XXVI Exposicarta, 2017. p. 800-804.  

38. LAURA CUE, JOSE BERMUDEZ, PEDRO DIAZ, IEDA SANCHES, P. HAPP, RAUL FEITOsa. A 

Comparative Analysis of Deep Learning Techniques for Crop Type Recognition 

in Temperate and Tropical Regions From Multitemporal SAR Image Sequences. 

In: Congresso Brasileiro de Cartografia, 2017, Rio de Janeiro. Anais do XXVII 
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1 Introduction

This scientific report aims to describe the whole progress of the project entitled
Integration between SciDB, TerraLib and R1 developed by the awarded technical
training fellow Luiz Fernando Ferreira Gomes de Assis2. This project started on the
1st of December 2016 and ended on the 31th of August 2017. It is part of the e-
Science Program 3, a thematic grant funded by São Paulo Research Foundation. The
research addresses how the scientific community can use e-Science methods and
techniques to improve the extraction and analysis of land use and land cover change
information from big Earth Observation (EO) data sets in an open and reproducible
way. This project is called e-Sensing: Big Earth Observation Data Analytics for Land
Use and Land Cover Change Information and is coordinated by Prof. Dr. Gilberto
Câmara Neto4. The e-Sensing team members consists of MSc. and PhD students,
as well as Postdocs, and Researchers. Its excellence and its published papers are
related to Geoinformatics and GIScience.

The main goal to develop this project is in the enhancement of the performance
to integrate an statistical environment with a multidimensional array database in
order to provide imaging routines for land use classification. The most used open
source statistical environment is R since it is easily extensible through a substantial
set of statistical functions and packages. Although the R environment provides a
wide variety of graphical and statistical tools, it still has main memory and perfor-
mance limitations when executing routines with large volumes of remote sensing
images compared to other languages.

In this sense, the integration between R and multidimensional array databases
such as SciDB can offer processing and analysis in the data server environment min-
imizing the data transfer between client and server by means of an interface with
the R environment. For all the aforementioned reasons, we developed an interface
between the R data analysis language, the SciDB multidimensional array database,
and a library able to handle data stored in a PostGIS database such as TerraLib
library. This architecture based on open-source tools was evaluated to assess how
it meets the needs of Earth Observation (EO) scientists taking into consideration
related works and a set of criteria to build researcher-friendly architectures for big
EO data analysis.

The remainder of this scientific report is organized as follows. Section 2 con-
tains an interoperable approach for integrating SciDB-R. Section 3 describes ex-
isting global LULC classification maps with a summary of the best practices for
analysis. Section 4 comprises an important application case study for evaluating
the integration. Section 5 contains a description of the complementary activities
to develop and guide this project to future perspectives. Section 6 consists of a
conclusion about a description and an evaluation of the institutional support. Fi-

1 http://bv.fapesp.br/pt/bolsas/168252/integracao-entre-scidb-terralib-e-r/
2 http://www.bv.fapesp.br/pt/pesquisador/669236/luiz-fernando-ferreira-gomes-de-assis/
3 http://www.fapesp.br/8436
4 http://www.bv.fapesp.br/pt/pesquisador/997/gilberto-camara-neto/



nally, the papers written for better documenting this project are included in the
appendices.



2 Toward an interoperable SciDB-R in-
tegration

Integrating multidimensional array databases such as SciDB with R algorithms of-
fers not only more flexibility programming of complex analysis but also overcome
the memory limitation of those statistical environment to deal with large data sets.
This combination mitigates the burden on scientists, interested on developing re-
mote sensing time series analysis, by providing a friendly environment, big data
management, and statistical computing tools. We considered in our architecture
the classification of satellite imagery organized in a three dimensional array in
space-time [4]. This architecture facilitates the analysis of big Earth Observation
(EO) data, complex algorithms reusability, collaborative work within the scientific
community and results validation. These features are achieved by combining a
multidimensional array database [5], and a statistical analytics environment [6]. As
shown in Figure 1, this architecture decision was taken based on one of the most
promising research trends in big EO data analysis, the extraction of information
from remote sensing time-series.

Figure 1: Remote Sensing Time Series Approach (1)

2.1 Web Time Series Processing Service (WTSPS) for Mul-

tidimensional Array Databases

The issue of handing an increasing number of geospatial data require new develop-
ments of geospatial technologies. An on-demand computing platform has emergerd
to deal with remote sensing images based on a processing chain model. That ap-
proach coupled with interoperability provided by web services play an important
role in big EO data processing. However, even considering the standards proposed
by the Open Geospatial Consortium (OGC) for visualising, disseminating and pro-
cessing geospatial data, we are still stuck on robust, inadequate and low latency
performance approaches such as Web Map Service (WMS), Web Coverage Service



(WCS), Sensor Observation Service (SOS) and Web Processing Service (WPS) stan-
dards. For these reasons, we consider a new family of web services for scientists
working with large sets of remote sensing time series. In this project, we designed
a novel approach called Web Time Series Processing Service (WTSPS), which is
better suited for processing large sets of EO time series using multidimensional
array databases. Here, we illustrate how WTSPS works by presenting an approach
overview, its use cases and a class diagram.

At first, we developed a intuitive interface in R so that domain specialists can
use in an easily and fast manner. We plan to emphasize only WTSPS working in this
document since WTSS was already presented to the scientific community. WTSPS
aims to bridge the interoperability gap between scientists and big data processing
throughout a set of standard operations for processing remote sensing time series
organized in multidimensional array databases. That includes: 1. list algorithms,
2. describe algorithms, 3. get status process, 4. execute an algorithm and 5. manage
permissions . Of course, more discussions are necessary but we do think these
kickoff ideas are important to new insights. The initial idea is depicted in Figure 2.

Figure 2: WTSPS Overview

After we specify some functionalities were necessary to develop a large process-
ing service on the server side in the first year of this fellowship, a use case diagram
of these requirements were created and presented in Figure 3. There, we can see
that user can list the algorithms in which their scripts are stored on the server
ready to be run for any data stored in a multidimensional array databases. Then,
users are able get a description of their parameters, that is, their required input
(e.g., format and type) and expected output (e.g., which attributes). Finally, users
only can run based on specific roles, because it would be necessary a permission
administration unit.

A class diagram of what we have discussed until here is depicted in Figure 4.



Figure 3: Use Case Diagram

Figure 4: Class Diagram



3 Understanding the best practices for
LULC change classification analysis

3.1 State of the art of large LULC change classification

maps

With the appearance of technology and decreasing satellite data cost, many re-
gional and global land cover products have been created in the last decade. With
the availability of remote sensing products and improvements in variability, acces-
sibility, and cost, land cover products have become essential inputs for interdis-
ciplinary studies, for instance, to monitoring deforestation and change detection
analysis [7]. In this section, we describe briefly two initiatives which provide land
cover for all regions worldwide: GlobCover and GLC-SHARE. While these initiatives
have specific legends, to provide as much detail as possible, in our approach we try
to consider a particular legend in order to provide an adequate classification to the
study regions. But before, we introduce some concepts about two MODIS products
which we will use in our experiments.

3.1.1 Moderate-Resolution Imaging Spectroradiometer (MODIS)

The Moderate-Resolution Imaging Spectroradiometer (MODIS) data is a scientific
instrument on board of the Terra and Aqua platforms that provides atmosphere,
land, cryosphere and ocean features every 2 days (see Figure 5). This sensor collect
not only raw data but also offers several products generated for specific applica-
tions. There are 460 non-fill tiles, tiles are separated by 10 degrees at the Earth’s
equator. The tile coordinate system starts at (0,0) (horizontal tile number, vertical
tile number) in the upper left corner and proceeds to the right (horizontal) and
downward (vertical). The tile in the bottom right corner is (35,17). They consist of
4,800 rows and 4,800 columns of 250 meter pixels [8].

We considered in this project the MOD13Q1 product that provides vegetation
index values for each pixel each 16 days. The most important ones are the Nor-
malized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index
(EVI), which referred to the continuity index of the existing National Oceanic and
Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-
AVHRR) derived NDVI, and the improved sensitivity over high biomass regions re-
spectively. The MODIS contains reflectance bands 1 (Red), 2 (NIR), 3 (Blue), and 7
(MIR), as well as four observation layers, Table 1.

Another product is the MODIS Land Cover Type (MCD12Q1) product, that pro-
vides a collection of land cover types that support global change science by map-
ping global land cover using spectral and temporal information derived from MODIS.
The MCD12Q1 product contains five classifications schemes, which describe land
cover properties derived from observations spanning a year’s of Terra and Aqua
MODIS data. The first scheme identifies 17 classes defined by the International



Figure 5: Sinusoidal Tile Grid

Table 1: Science Data Set Layer Characteristics

Description Units Data Type Fill Value Valid Range Scaling Factor
250m 16 days NDVI NDVI 16-bit signed -3000 -2000 to 0.0001

integer 10000
250m 16 days EVI EVI 16-bit signed -3000 -2000 to 0.0001

integer 10000
VI quality indicators Bit Field 16-bit unsigned 65535 0 to 65534 N/A

Surface Reflectance Band Reflectance 16-bit signed -1000 0 to 10000 0.0001
1 (RED) integer 10000

Surface Reflectance Band Reflectance 16-bit signed -1000 0 to 10000 0.0001
2 (NIR) integer

Surface Reflectance Band Reflectance 16-bit signed -1000 0 to 10000 0.0001
3 (BLUE) integer

Surface Reflectance Band Reflectance 16-bit signed -1000 0 to 10000 0.0001
7 (MIR) integer

View zenith angle of VI Degree 16-bit signed -10000 0 to 18000 0.01
pixel

Sun zenith angle of VI Degree 16-bit signed -10000 0 to 18000 0.01
pixel

Relative azimuth angle of Degree 16-bit signed -4000 0 to -18000 to 0.01
VI pixel 18000

Day of year of VI pixel Julian day of 16-bit signed -1 1 to 366 N/A
year

Quality reliability of VI pixel Rank 8-bit signed 255 0 to 3 N/A
integer

Geosphere Biosphere Programme (IGBP), which includes 11 natural vegetation
classes, 3 develop and mosaicked land classes, and three non-vegetated land classes
[8].

The land cover classes Land Cover Type 1 (IGBP) global vegetation classification
scheme are: 0. Water, 1. Evergreen Needleleaf forest, 2. Evergreen Broadleaf
forest, 3. Deciduous Needleleaf forest, 4. Deciduous Broadleaf forest, 5. Mixed
forest, 6. Closed shrublands, 7. Open shrublands, 8. Woody savannas, 9. Savannas,
10. Grasslands, 11. Permanent wetlands, 12. Croplands, 13. Urban and built-up,
14. Cropland/Natural vegetation mosaic, 15. Snow and ice, 16. Barren or sparsely
vegetated and 254. Unclassified [9].



3.1.2 GlobCover

The GlobCover, an European Space Agency (ESA) initiative started in 2005 in part-
nership with EEA, FAO, GOFC-GOLD, IGBP, JRC and UNEP is one of the projects
we can study to samples and classes selection. This GlobCover developed a service
for the generation for global composites and land cover maps based on observa-
tions from Envisat satellite MERIS (Medium Resolution Imaging Spectrometer In-
strument) Fine Resolution surface reflectance mosaics, resolution 300m. Two land
cover maps were available by ESA covering the periods: December 2004 to June
2006 and January until December 2009 [2].

The GlobCover 2009 land cover map is delivered as one global land cover map
covering the entire Earth. Its legend, which counts 22 land cover classes, has been
designed to be consistent at the global scale and therefore, it is determined by the
level of information that is available and that makes sense at this scale [10]. Figure
6 presents the global GlobCover 2009 land cover map.

Figure 6: The GlobCover 2009 global land cover map with 22 classes legend. Figure
adapted from 2

The classification module of the GlobCover processing chain consists in trans-
forming the MERIS FR multispectral mosaics produced by the pre-processing mod-
ules into a meaningful global land cover map. The global land cover map has been
produced in an automatic and global way and is associated with a legend defined
and documented using the UN LCCS.



3.1.3 GLC-SHARE

The Global Land Cover-SHARE (GLC-SHARE) is a land cover database at the global
level created by FAO, Land and Water Division in partnership and with contribution
from various partners and institutions [11]. It provides a set of eleven thematic
land cover layers resulting by a combination of available high resolution national,
regional and/or sub-national land cover databases with the weighted average land
cover information derived from large-scale datasets. The database is produced
with a resolution of 30 arc-second ( sqkm). The approach implemented is based on
the utilization of the Land Cover Classification System (LCCS) and SEEA (System
of Environmental-Economic Accounting) legend systems for the harmonization of
the various global, regional and national land cover legends [3]. The benefit of
the GLC-SHARE product is its capacity to preserve the existing and available high
resolution land cover information at the regional and country level obtained by
spatial and multi-temporal source data, integrating them with the best synthesis of
global datasets. The database is distributed includes eleven layers, in raster format
(GeoTIFF), each pixel values, the accuracy and associated information as source,
date and resolution are indicated in the associated data quality indicator layer (see
Figure 7).

Figure 7: Distribution of dominant GLC-SHARE land cover. Adapted from 3

3.2 Applying best practices for classification analyisis

The methodology applied to the study case follows a standard workflow for land
use land cover studies in supervised or semi-supervised approach, see [12] for a lit-
erature review. In these approaches we can recognize four main features: the sam-
pling design, the classification method, the response design and the results analy-
sis. Additionally, several relevant sub-features were included within each feature.
The initial definitions include the spatial assessment unit, the sources of reference



data, the reference labeling protocol and the agreement definitions. The sampling
consists of the stage for selecting a subset of the smallest spatial units that help the
classification methods. It includes the interpretation and quality control, phenology
characterization and the homogeneity measurement. For a while, we are just con-
sidering supervised methods for classification, specifically, the classification results
provided by the TWDTW method R package, also known as dtwSat.



4 Application Case Study in Peru and
Bolivia

Using the architecture and the methodology discussed in the previous chapters, we
organized the case study accordingly to the following activities: sampling design,
classification algorithm application and analysis. We considered here TWDTW al-
gorithm to perform the classification by means of the SciDB-R streaming. TWDTW
was implemented as an R extension package version of the robust and classic algo-
rithm called Dynamic Time Warping, to measure the dissimilarity between temporal
patterns and long-term time series by adding seasonal time-weight. This study was
accomplished with MSc. Adeline Marinho Maciel1 and its results are available in
TerraBrasilis2. The results approach Bolivia and Peru from 2000 to 2016, on an
yearly basis. The workflow was composed by four main features layers with the
aim of improving the process of evaluating supervised algorithms such as TWDTW
considering remote sensing applications. Our results showed that TWDTW R pack-
age in multidimensional array databases can add a substantial contribution to the
iterative workflow of evaluating land use and land cover for classification satellite
imagery.

4.1 Sampling Design

The sampling design considers interpretation and quality control, phenology char-
acterization and homogeneity characteristics, and is influenced by the classification
method to be used. In this study case, as we have used the TWDTW method, the
sampling design is used will be used to build the temporal patterns of the land cover
of interest. The study area is located in the South America and covers two coun-
tries: Peru and Bolivia. Both countries have together approximately 2,383,801km2.
Figure 8 shows a more close overview of both countries.

Usually, once the sampling method is defined, researchers perform field work
campaigns, or visual interpretation of satellite images by experts in order to define
the patterns of the classes. Considering the large area and the short time span for
the study case, we used a different approach. We started from the GlobCover2009
global land cover classification dataset as a reference. We define as the inter-
est classes for this study 16 classes Barren Land, Closed Broad Deciduous Forest,
Closed Broad Evergreen Forest, Herbaceous, Mosaic Cropland, Mosaic Grassland
Shrubland, Mosaic Shrubland Grassland, Mosaic Vegetation, Permanently Flooded
Forest, Rainfed Cropland, Regularly Flooded Forest, Shrubland, Snow, Sparse Veg-
etation, Urban Area and Salar, this last is specific class to map areas of the Salar
de Uyuni in Bolivia.

We carried on a design sampling to select samples of theses classes and their
temporal patterns to be used in TWDTW. Potentially, every pixel classified as one

1 https://www.researchgate.net/profile/Adeline_Maciel
2 http://terrabrasilis.info/composer/E-SENSING



Figure 8: Peru and Bolivia. Adapted from 2

of the interest classes in the reference classification map is a sample. However,
the spatial homogeneity is a important aspect to be considered. Figure 9 shows an
example of a region in which a sample can not be collected and a region where a
viable sample can be distinguished.

Figure 9: Automated Sampling based on existing classification maps

These spatially (considering homogeneity) and statistically (considering their
distribution in size) consistent points located in Peru and BolÃ via can be seen in
Figure 10.

As the reference classification map was created using the space first approach,
the spatially consistent points are not homogeneous in terms of spectral similarity
along a time period. A clustering algorithm is used to divide the samples in sub-
classes, each subclass of a class will define a distinctive temporal pattern of the
same class. Table 2 shows the number of samples for each class, and for each
subclass. Figure 11 shows the 41 temporal patterns in terms of the Normalized Dif-
ference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and Near
Infra Red (NIR) spectral attributes.



Figure 10: Sampling in Peru and Bolivia

Table 2: Number of samples per class

Class ID Class Number of samples

1 Barren Land 304

2 Closed Broad Deciduous Forest 295

3 Closed Broad Evergreen Forest 296

4 Herbaceous 324

5 Mosaic Cropland 330

6 Mosaic Grassland Shrubland 291

7 Mosaic Shrubland Grassland 297

8 Mosaic Vegetation 299

9 Permanently Flooded Forest 27

10 Rainfed Cropland 302

11 Regularly Flooded Forest 304

12 Salar 28

13 Shrubland 274

14 Snow 284

15 Sparse Vegetation 278

16 Urban Area 295

Total 4228
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Figure 12 shows a legend used to label the results of the case study.

(a) TWDTW temporal patterns classes

(b) GlobCover 2009 classes

Figure 12: Land cover data legends.

4.2 Data Model and Storage

In our SciDB, we created a 3D array containing 11 attributes: ndvi (int16), evi
(int16), quality (int16), red (int16), nir (int16), blue (int16), mir (int16), view_zenith



(int16), sun_zenith (int16), relative_azimuth (int16), day_of_year (int16) and reli-
ability (int16). The array is called mod13q1_512 and contains three dimensions:
col_id (int64), row_id (int64) and time_id (int64). A few lines of which kind of infor-
mation is stored in the array can be seen below:

{col_id,row_id,time_id} ndvi,evi,quality,red,nir,blue,mir,view_zenith,
sun_zenith,relative_azimuth,day_of_year,reliability
{60044,48622,0} 5604,4992,2062,942,3344,929,816,1373,2487,-122,58,3
{60044,48622,1} 5371,4854,3098,1244,4131,897,1299,2672,2657,-201,67,3
{60044,48622,2} 8793,5603,2120,210,3272,116,656,4630,3063,-339,85,1
{60044,48622,3} 8795,5344,2116,197,3075,106,663,3700,3282,-502,108,0
{60044,48622,4} 9209,4616,2116,103,2504,16,464,1766,3136,1165,120,0
{60044,48622,5} 8850,4549,2116,151,2477,80,435,1584,3500,1121,136,0
{60044,48622,6} 8824,4611,2116,158,2531,82,447,1640,3772,1087,152,0
{60044,48622,7} 8817,4892,2116,171,2722,95,444,222,3947,1016,161,0
{60044,48622,8} 8844,5240,2116,182,2967,103,431,1201,4078,-659,186,0
{60044,48622,9} 8946,5238,2116,164,2950,85,423,273,3946,1181,193,0
{60044,48622,10} 8848,5359,2116,186,3045,110,402,166,3727,1270,209,0

4.3 Applying TWDTW using SciDB-R Streaming

Considering an architecture that focus on the researcher needs and involves analy-
sis of remote sensing time series, we decided to firstly apply an innovative method
for the classification study, so after, we could evaluate the accuracy of our results.
The preliminary results helps us to identify high demand efforts to classify and
validate small areas of our region of interest instead of premature running the
method for large areas. Since we are dealing with irregularly sampled and out-of-
phase time series, we employ a method called Time-Weight Dynamic Time Warping
(TWDTW) [13] due to its recent result studies and robustness. TWDTW takes into
account a weighted extension giving an open boundary to the well known algorithm
Dynamic Time Warping [14]. Figure 13 depicts an overview of the roles played by
the architecture and the method deployed in this case study.

Figure 13: Architecture for big Earth Observation data analytics. Adapted from (4)

TWDTW compares temporal patterns of known vegetation index associated with
land cover classes to an unknown long term time series pixel (see Figure 14). The
method finds the optimal alignment within this comparison even if both time series
are irregularly sampled or are out of phase in the time axis, that is, regarding the



temporal range and the phenological cycle that is relevant for this kind of classifi-
cation. As a result, the method provides a dissimilarity measure.

Figure 14: Open boundary TWDTW alignment from a long-term time series C di-
vided in subintervals, and the best matching temporal patterns A in each subinter-
vals C

The idea of SciDB-R streaming is very simple and is totally compatible with
frameworks responsible for storing and processing large distributed data. For ex-
ample, we have a big problem such as classifying satellite imagery that cover an
Amazon Forest area. At first, we need to break our problem into small areas. That
is exactly what SciDB does, it divides into chunks, a partitioning technique where
each instance keep a subset of the array locally. This feature allows an uniformly
scalable performance on large data sets. Intrinsically, the data stream then helps
a fast access and complex analysis without facing errors of parallel and distributed
computing (see Figure 15).

Figure 15: Big Data Streaming Analytics

After compiling and loading SciDB streaming, we can use an AFL operator call
passing as input parameters: an input array (mod13q1_512), a R classification
script, the R data output (an R binary data.frame) interface, the output column
SciDB types, the output column names (the same length as used in data.frame



columns). Both types and names should be written in a comma-separated manner.
Other parameters are optional, but the aforementioned parameters are the ones
we used here. An exemplary call can be seen in Listing 1.

1 stream(
2 scidb_array,
3 'Rscript script.R',
4 'format=R format output',
5 'types=output column types',
6 'names=output column names'
7 )

lol 1: Stream Operator Call.

The R classification script has standards input and output. At first, it reads a
binary connection and interprets the data by means of a a simple low-level interface
for serialization and unserialization. Paradigm43 also indicates a required different
answer to SciDB when the last message is sent, that is, when ncol is equal to 0.
That allows the correct written of binary chunks into SciDB in all the cases. A more
detail example can be seen in Listing 24.

1 con_in = file("stdin", "rb")
2 con_out = pipe("cat", "wb")
3 while( TRUE )
4 {
5 input_list = unserialize(con_in)
6 ncol = length(input_list)
7 if(ncol == 0)
8 {
9 res = list()

10 writeBin(serialize(res, NULL, xdr=FALSE), con_out)
11 flush(con_out)
12 break
13 }
14

15 #....write algorithm
16

17 writeBin(serialize(c(out), NULL, xdr=FALSE), con_out)
18 flush(con_out)
19

20 }
21 close(con_in)

lol 2: STDIN and STDOUT - R-SciDB Streaming.

To write the algorithm, we need at the beginning load all the R packages and
data necessary to run our classification algorithm. In our case, we need to load
3 http://www.paradigm4.com/
4 https://github.com/Paradigm4/stream/blob/master/examples/R_identity.R



dtwSat, parallel, plyr, the patterns and the input_list (see Listing 3). dtwSat is an
R implementation of the Time-Weighted Dynamic Time Warping (TWDTW), previ-
ous mentioned method for land use and land cover mapping using satellite image
time series. parallel is an R package implementation of coarse-grained parallelism
in computation to split the task. Also, plyr is a set of clean and consistent tools
that implement the split-apply-combine pattern in R. The temporal patterns and
input_list are used as input for dtwSat.

1 library(dtwSat)
2 library(parallel)
3 library(plyr)
4 load(patterns)
5 attach(input_list)

lol 3: Load of packages, patterns and MOD13Q1 data.

As in our array in SciDB, we define the time dimension as 64 byte integer, the
time instances are represented by numbers from 0 until n, where n is the last time
instance gathered. That means, for MOD13Q1 if we have 391 time instances, the
array is from 2000-02-18 to 2017-01-01 by 16 days. Since dtwSat requires a date
format for a zoo object, we need to transform and create a time sequence from a
time sequence.

1 createTimeSequence = function(year=2000:format(Sys.time(), "%Y"), frequency=16){
2 res = unlist(lapply(year, function(y){
3 days = seq(from = as.Date(paste0(y,"-01-01")),
4 to = as.Date(paste0(y,"-12-31")),
5 by = frequency)
6 }))
7 res = as.Date(res, origin="1970-01-01")
8 res = subset(res, res >= as.Date("2000-02-18"))
9 res

10 }

lol 4: Create Time Sequence based on SciDB data.

We also need to ensure col and row identifiers are unique, since when they come
from SciDB they repeat for each time instance.



1 I = unique(irow_id)
2 J = unique(icol_id)
3 indexArray = list()
4 k = 1
5 for(i in I)
6 for(j in J){
7 indexArray[[k]] = c(j=j, i=i)
8 k = k + 1
9 }

lol 5: Get unique columns and rows values.

During the R classification script, we build MODIS timeline considering SciDB
indexes starts in 0. We also need to set the breaks, a vector of class Dates with
from, to and by arguments, and the time-weight function for the algorithm, respon-
sible for computing the TWDTW local cost matrix. The time-weight function It is
necessary to get the labels too. After all, we multiply all the stored values by the
scale_factor described in the array metadata.

1 dates = createTimeSequence()[itime_id+1]
2

3 breaks = seq(from = as.Date("2000-09-01"),
4 to = as.Date("2017-09-01"),
5 by = "12 month")
6 label_names = as.character(labels(patterns))
7

8 weight.fun = logisticWeight(alpha=-0.1, beta=100)
9

10 scale_factor = 0.0001
11 dndvi = ndvi * scale_factor
12 devi = evi * scale_factor
13 dnir = nir * scale_factor

lol 6: Define initial TWDTW parameters.

At the end, we define a function receiving the columns and rows values as an
input in order to facilitate the classification images parallelism. In this function, we
select time series by array indices, remove the duplicated dates, avoid processing
for timeseries smaller than 9 time instances, build the time series using zoo objects,
apply TWDTW method, generate the classification values and create the data.frame
output. All of these operations are performed in parallel using R and SciDB.



1 fun = function(p){
2

3

4 idx = which(icol_id==p["j"] & irow_id==p["i"])
5

6

7 idx = idx[!duplicated(dates[idx])]
8 if( length(idx) < 9 )
9 return(NULL)

10

11

12 x = twdtwTimeSeries(zoo(data.frame(ndvi = dndvi[idx],
13 evi = devi[idx],
14 nir = dnir[idx]),
15 dates[idx]))
16

17

18 matches3 = twdtwApply(x = x,
19 y = patterns,
20 weight.fun = weight.fun,
21 keep = FALSE,
22 theta = 0.5,
23 span = 250)
24

25

26 ts_classification = twdtwClassify(x = matches3,
27 breaks = breaks,
28 overlap = 0.5)
29

30 aligs = ts_classification[[1]]
31 k = nrow(aligs)
32 data.frame(
33 colid = as.double(rep(p["j"], k)),
34 rowid = as.double(rep(p["i"], k)),
35 time = as.double(seq_len(k)),
36 from = as.double(as.integer(aligs$from)),
37 to = as.double(as.integer(aligs$to)),
38 label = as.double(match(aligs$label, label_names)),
39 dist = as.double(aligs$distance)
40 )
41 }
42

43 out = do.call("rbind", mclapply(indexArray, mc.cores = 3, FUN=fun))

lol 7: Applying TWDTW.



5 Complementary Activities

In this chapter, we discuss in more details a set of complementary activities in
which the technical training fellow executed to achieve the project goals and im-
prove his personal and professional background. These activities involve mainly
weekly and monthly meetings, and the attendance of summer schools, workshops
and symposiums.

5.1 Weekly and Monthly Meetings (Image Processing Di-

vision): The Research Group Integration

For the project progress, there have been weekly meetings among the project re-
searchers and developers, where each member presented in which activities he/she
was involved in the week before and planning to do the week after. In these meet-
ings, everyone was responsible for contributing with ideas using his/her own expe-
rience to solve anyone’s problem. Furthermore, Image Processing Division (DPI)
members were committed to explain very deeply about a subject he/she was inves-
tigating that time.

DPI is part of the General Coordination of Earth Observation (OBT) of the Brazil-
ian National Institute for Space Research (INPE). Its main activities involve scien-
tific and technological research and development on digital processing of satellite
images and remote sensing. This division aims to specify, design and develop sys-
tems for image processing. The head of this research group is Prof. Dr. Gilberto
Câmara, who is also the supervisor and project coordinator of e-Sensing project.
His main research topics are Geoinformatics, GIScience, Spatial Analysis, Land
Use Change and Applied Ontology. He established a free and open access policy
for INPE’s data and guided INPE’s team on big advances in forest monitoring by
satellite.

The group also has plenty of experience with Geoinformatics. Lúbia Vinhas is
an Associate Professor on Geoinformatics with a PhD in Computer Science. She
currently heads INPE’s Image Processing Division and is one of the manager of the
TerraLib project. In the e-Sensing project she is involved with the database design,
access and processing of information in SciDB. Karine Ferreira is an Associate Pro-
fessor of Geoinformatics at INPE, working in the Image Processing Division. She
has a PhD in Computer Science. Her research topics include data models, alge-
bras and databases for spatiotemporal data and spatiotemporal GIS development.
Gilberto Ribeiro de Queiroz has been an Associate Professor since 2005 of spatial
databases at INPE, focused on the development of geotechnologies.

5.2 I Workshop de Aplicações do LuccME

The LuccME (http://luccme.ccst.inpe.br/) is an explicit spatially land-use modeling
framework developed by the Earth System Science Center (CCST/INPE) and its



collaborators as an extension of the model TerraME. The main objective of the
workshop was to promote the debate on the possible applications of LuccME by
discussing success stories at different scales - including models of deforestation, ex-
pansion of agriculture, desertification, urban growth and other processes of change
of use and coverage from the Earth. As a result, the workshope allows participants
to build a collaborative networking between users and LuccME for specific topics,
and survey of subsidies for future versions of the tool. The thematic sessions was
really interested to this project and future collaborations could be seen.



6 Conclusions

The technical training fellowship offered many academic and professional gains.
Attending to a high level research institute such as INPE, gives not only good fu-
ture opportunities, but also provide a chance to exchange ideas with different re-
searchers, and consequently, gain knowledge to solve problems using solutions that
would not be possible without this experience. The e-Sensing team 1 also helped
the fellow to undertake his activities, under the supervision of Prof. Dr. Gilberto
Câmara, which had a great importance and had provided significant contributions
to the project.

All the experiences had directly and indirectly benefited the project entitled In-
tegration among SciDB, TerraLib and R because GIScience and e-Sensing team
members have experts in big data, spatio-temporal analysis and database. There-
fore, their support was critical during the software development. Regarding the
project objectives and the obtained results, we developed an interface between the
R data analysis language, the SciDB arrays database, and the TerraLib library. This
because, we implemented analysis methods for big Earth Observation data devel-
oped by the project team in the R environment that can be efficiently executed in
the SciDB environment.

Although the SciDB environment has features for complex analysis, an inter-
face with R is still important because many applications require the combination
of matrix and vector data. In our land use classification case study, we have seen
an enhanced performance of the SciDB-R compared to our initial experiments. For
this, it was necessary to run by means of a remote execution of the R scripts in a dis-
tributed environment server, minimizing in this way, the transfer of data between
client and server.

1 http://esensing.org
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Abstract. Although several studies perform time series analysis using remote sensing data provided by
Earth observation satellites, few have been explored concerning the reasoning about land use change
using these data. Besides, exists the challenge of make the best use of big Earth observation data sets
to represent change. In this context, this work presents a new formalism - STILF (Spatiotemporal
Interval Logic Formalism), and shows how to use it for reasoning about land use change using big Earth
observation data. Extending the ideas from Allen’s interval temporal logic, we introduce predicates
holds(o, p, t) and occur(o, p, Te) to build a general framework to reason about events. Events can be
defined as complete entities on their respective time intervals and their lifetime is limited while objects
persist in time, with a defined begin and end. Since events are intrinsically related to the objects they
modify, a geospatial event formalism should specify not only what happens, but also which objects
are affected by such changes. The formalism proposed and predicates extended from Allen’s ideas
can model and capture changes using big Earth observation data, and also allows reasoning about land
use trajectories in regional or global areas. Examples for tropical forest area application is presented
to better understand our proposal using STILF. For the future, the proposed formalism will be include
other temporal analysis tools to thinking about events related the land use and cover change.

Keywords: land use and land cover, spatiotemporal representation, Allen’s interval, events, logic
formalis, remote sensing

1. Introduction
One of the recent trends in applications of remote sensing data is the use of big data sets

for obtaining information about land use and land cover. Using long-term time series, scientists
can obtain new information to understand how mankind is using natural resources. Satellite
image time series data provides a new perspective in remote sensing data analysis (CAMARA et
al., 2016a).

An example of big Earth Observation data analysis is the work by Hansen et al. (2013).
Using more than 650,000 LANDSAT images and processing more than 140 billion pixels, the
authors compared data from 2000 to 2010 to produce maps of global forest loss. The results
for 2000 and 2010 were compared to account for forest loss during the 2000-2010 decade. The
method classifies each 2D image one by one.

By contrast, methods such as the time-weighted dynamic time warping (TWDTW) (MAUS
et al., 2016) and TIMESTAT (JöNSSON; EKLUNDH, 2004) work on remote sensing time series to
extract long-term information for each pixel. These algorithms work on individual time series
and combine the results for selected periods to generate classified maps.
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The benefits of remote sensing time series analysis arise when the temporal resolution of the
big data set is able to capture the most important changes. Here, the temporal autocorrelation of
the data can be stronger than the spatial autocorrelation. Given data with adequate repeatability,
a pixel will be more related to its temporal neighbours than to its spatial ones. In this case,
time-first, space-later methods lead to better results than the space-first, time-later approach
(CAMARA et al., 2016a).

Given the possible new results that can be obtained with big remote sensing data, the
scientific challenge is how to best represent and detect change. Issues about representation,
reasoning, modelling of changes have been researched in GIScience (PEUQUET; DUAN, 1995;
GALTON, 2004). In general, these studies show the usefulness of using the concept of “events”
to represent changes in spatiotemporal data. The objective of this paper is to apply the concept
of “events” for representing change in big remote sensing data sets, following the ideas from
Galton (2015). Additionally, we extend the interval temporal logic proposed by Allen (1984)
to build a logic formalism which allows reasoning about events of change in land use and land
cover data. This paper extends and improves on earlier work by our research group (CAMARA
et al., 2016b).

2. A Spatiotemporal Interval Logic Formalism - STILF
To describe land use and land cover changes, we consider an approach based in time

intervals. We extend the interval temporal logic from Allen (1984) to build a logic formalism
for reasoning about events. Allen (1983) defines a set of thirteen relationships between two time
intervals: before, meets, during, starts, finishes, overlap, with inverse relationship, and equal.

To extend the predicates from Allen (1984) to spatiotemporal data, we aggregate the notion
of geo-objects, which are related to space. This way, the formalism is composed for a set
of elements: (1) discrete geo-objects (O = o1, o2, ..., on); (2) properties of geo-objectos
(P = p1, p2, ..., pn); and (3) time intervals (T = t1, t2, ..., tn). We also use the predicates:
(1) holds(o, p, t) → bool, which asserts that a properties p from geo-object o holds during
a interval t; and (2) occur(o, p, te) → bool, given a interval Te ⊂ T , the properties p from
geo-object o will be true during all sub-interval Te.

The start point of the spatiotemporal interval logic formalism (STILF) is a set of time series
data classified from remote sensing images. This images were previously classified by means
of data mining algorithm, such as TWDTW (MAUS et al., 2016), and stored in a array database.
This is a important stage for the application of the formalism, once allows that Earth observation
data were stored in a database which support a large amount of remote sensing data, and
subsequently, can will be used for different applications. Next, this data set will be processed,
for extraction of the set of elements. Each element is composed of a discrete geo-object, its
properties of geo-object and time intervals for which these properties hold.

The set of elements will be used as input data for our formalism. Combining the
holds(o, p, t) and occur(o, p, te) predicates with Allen’s relations, we can ask questions about
trajectories of land use and land cover change. The answers will be data sets with the events that
have occurred during the whole interval for which we have data. In the last stage, individual
events will be combined in terms of their characteristics into recurring events or transition
events. Figure 1 shows a overview of our proposed formalism.

3. Application: Examples of Reasoning About Events from Classified Land Use and Land
Cover Time Series
In this section we show three examples of application using remote sensing data. The

formalism presented was developed in a R programming language and applied on sample
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Figure 1: Spatiotemporal interval logic formalism (STILF) design

regions. The input data is composed for a set of time series classified to the municipality of
Porto dos Gaúchos, located in northwest Mato Grosso (MT) state, Brazil. With territorial area
6,862.118 km2, geographical coordinates, latitude 11◦ 31’ 31" South and longitude 57◦ 24’ 50"
West and population of 5,400 inhabitant in 2010, according to IBGE statistics (IBGE, 2016).
Porto dos Gaúchos is an area into Amazon biome.

Figure 2: Municipality of Porto dos Gaúchos with highlight for three sample regions selected
to application of the formalism.

We extracted information from each sample region to discover what events had happened.
These events allow us to establish the trajectories of land use and land cover. For example, the
results may indicate the increase of deforestation in the municipality after earlier expansion of
areas. We can also detect the conversions from pasture to soybean and from soybean to double
cropping (soybean-corn or soybean-cotton).

After we classify the time series, we apply a post-processing rule to distinguish natural,
intact forests from areas that had been deforested and then were allowed to regrow. This
is required to be able to differentiate primary forest, without degradation, from secondary
vegetation, forest areas that happened after other land use or land cover classes. The new
classes generated after this stage were called “ Secondary vegetation” .

In the first sample region, with an area of 50.23 km2, located in Northeast of the
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municipality, we explored the ability of the formalism to detect events composition. Our query
searched for events preceding and following the year of 2008, associated to the “Soybean-
Millet” crop areas Question 1. The result were three graphics with information for analysing
land use trajectories: (1) a custom map that highlights events that show the transition from
“Pasture” to“Soybean-Millet”, Figure 3; (2) a bar graph which counts the total area (km2) for
each event by year; and (3) a graph which represents the temporal sequence of the events for
each pixel in the time. This type of graph show what pasture areas were transformed into crop
areas (Figure 4(b)).

Question 1: Example of application of the spatiotemporal interval logic formalism for mapping
of changes in land use and cover for the first sample region

a) Which “Pasture” areas before 2008 have been turned in
“Soybean-Millet” cropping areas?

∀o ∈ O, occur(o, “Pasture”, t1) ∧ occur(o, “Soybean−Millet”, t2)∧
occur(o, “Soybean−Millet”, t3)∧

preceding(t2, t1)⇔ (metBy(t1, t2) ∨ after(t1, t2))∧
next(t2, t3)⇔ (meets(t1, t2) ∨ before(t1, t2))

where t1 = {2000, ..., 2007}, t2 = 2008, t3 = {2009, ..., 2015}

Figure 3: Sample region 1, events highlighted.
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(a) Area in (km2) with “Pasture” events turned into “Soybean-
Millet” from 2008.

(b) Temporal sequence of the events.

Figure 4: Graphics to analyses of events composition - sample region 1

In the second sample region, located to the south of the municipality and area of 59.568 km2,
we investigated which “Forest” areas that have been turned into “Pasture” or “ Low vegetation
(a second type of pasture)” after 2001. The formal representation of the question is shown
in Question 2. Three output plots were generated with information about events: a map that
highlights events that happened yearly, Figure 5; a bar graph with total area for each event by
year (Figure 6(a)), and a temporal representation for each pixel over time, which shows the
transitions from forest to pasture (Figure 6(b)).

Question 2: Example of application of the STILF for mapping of changes in land use and cover
for the second sample region

b) Which “Forest” areas have been turned into “Pasture” or “Low-vegetation”
after the year of 2001?

∀o ∈ O, occur(o, “Forest′′, t1)∧
(occur(o, “Pasture”, t2)∨ occur(o, “Low − vegetation′′, t2))∧

next(t1, t2) where t1 = 2001, t2 = {2002, ..., 2015}

In a third sample region, located northwest of Porto dos Gaúchos municipality and area of
101.963 km2, we wanted to know which “Forest” areas have not undergone degradation over
years (Question 3) In a similar way to the PRODES system, forest areas that from regrowth
after fire or deforestation are called “Secondary vegetation” by our post-processing rule and are
not computed. Figure 7 shows a map that highlights the events. Figure 8 displays the amount of
forest grouped by year. We can see the expansion of deforestation until 2006, when there was a
significant reduction.

Question 3: Example of application of the STILF for mapping of changes in land use and cover
for the third sample region

c) Which “Forest” areas have not undergone degradation during interval of 15 years?
∀o ∈ O, occur(o, “Forest”, t1) where t1 = {2001, ..., 2015}
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Figure 5: Sample region 2, events highlighted

(a) Area in (km2) with “Forest” events turned into “Pasture”
and/or “Low-vegetation” from 2001.

(b) Temporal sequence of the events to
second sample region.

Figure 6: Graphics to analyses of events composition - sample region 2

This spatiotemporal interval logic formalism makes it easy to build questions in a logic
representation in order to reason about changes in land use and land cover. We can show the
trajectories of change in different perspectives. This makes it easier to understand changes in
an environment. The formalism is robust. It allow different logical queries combining Allen’s
relations and also predicates of geo-objects.
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Figure 7: Sample region 3, with events highlighted

Figure 8: Area in (km2) with “Forest” events which have not undergone degradation during the
period of 15 years.

4. Final Considerations
A spatiotemporal interval logic formalism to reasoning about changes in land use and land

cover was presented in this paper. This formalism is an extension from predicates defined by
Allen (1984). We introduce geo-objects as new elements for analyses involving spatial data. We
show three examples of application where the formalism was implemented in a programming
language, take advantaging of the resources for data visualisation and results.
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ABSTRACT
This work presents an architecture for big Earth Observation
data analytics. It uses array databases to support storage and
management of large volumes of satellite image time series.
The analysis methods are developed in R and enable using
the full depth of satellite image time series with advanced
statistical learning algorithms. New kinds of web services
allow data access and remote data processing of time series.
The e-sensing architecture has been designed with a focus
on land use and land cover classification using SITS, an area
of Earth observation where much progress is required. This
architecture is fully implemented and has already allowed
innovative results in land use and land cover mapping. The
method works with big data sets with a minimal set of
assumptions to increase its generality. Our work promotes
reproducibility and reuse of the methods and results.

Index Terms— Earth observation, web services, satellite
image time series, array databases, science reproducibility,
open source.

1. INTRODUCTION

The data deluge resulting from the open access policies
for Earth observation (EO) data has brought about a major
challenge: How to design and build technologies that allow
the EO community to analyse big data sets?. Developing
such a solution is hard because current technologies for
big data management are quite different and incompatible.
Alternatives include using flat files [1], MapReduce-based
solutions such as Google Earth Engine [2], and distributed
multidimensional array databases such as Rasdaman [3] and
SciDB [4]. Each choice has its advantages and drawbacks,
and fits certain needs better than others.

The first option of an infrastructure for big EO data is to
store EO data as flat files and use file management systems.
This is the approach taken by the Australian Data Cube [1].
This choice makes it easy to preprocess images from different
sources so that they become geometrically and radiometrically

This work is supported by the São Paulo Research Foundation (FAPESP)
e-science program (grant 2014–08398–6) and by Germany’s International
Climate Initiative (IKI/BMUB) under grant 17-III-084-Global-A-RESTORE+.
Gilberto Camara is also supported by CNPq (grant 312151–2014–4).

compatible. Data merging and cross-calibration tasks are
simple to perform. Existing pixel-based image analysis
methods can be applied to big data sets. However, these
simple infrastructures have a high management cost. Data
analysis proceeds by searching all the relevant files. The
programs open each file, extract the relevant data and then
move onto the next file. When all the relevant data has been
gathered in memory, the program can begin its analysis.
Working with time series becomes specially burdensome
because of the number of files that must be opened for a single
time series to be retrieved. Managing 10,000 - 100,000 files
at once can lead to scalability and performance bottlenecks.

An alternative is to take a mainstream solution used for
other big data applications and adapt it to EO data. This is
the case of MapReduce-based solutions such as Google Earth
Engine [2]. The MapReduce model has been motivated by
highly parallel applications such as text queries and there are
open source implementations such as Spark. MapReduce
architectures are very efficient for problems where each
pixel is processed independently. They lack flexibility for big
EO analytics, since they use an excessive granularity when
breaking the data into parts. Region-based methods such as
image segmentation are not supported, nor large-scale time
series analysis are possible.

A third option is to use array databases such as Rasdaman
[3] and SciDB [4]. Array DBMS reduce the impedance
mismatch between the data model (raster), the storage model
(arrays) and analysis functions such as linear algebra and
image processing. These databases split large volumes of data
in distributed servers in a “shared nothing” way. Each server
controls its local data storage. Arrays are multidimensional
and uniform, as each array cell holds the same user-defined
number of attributes. Array databases allow organising EO
data to meet the needs of different applications. Comparative
studies show the SciDB architecture to be more efficient
and more flexible for processing remote sensing data than
MapReduce [5]. However, since array databases are designed
for scientific data management, there is much less experience
with them. Developers using SciDB have to spend significant
effort for system configuration and performance tuning.
Despite these problems, we consider array databases to be
the best choice for support innovative big EO data analytics.



One of the areas where array DBMS allow advances on
big EO data analytics is when processing dense satellite
image time series (SITS). Using SITS is a leading research
trends in Remote Sensing [6], [7]. One of the more promising
applications of SITS is measuring land use change. Land
use change is important for Brazil, one of the world’s
largest agricultural producers with one of Earth’s richest
biodiversities. Many researchers have also pointed out the
need for improving future global land cover products [8],
[9]. Given this motivation, the e-sensing architecture has
been designed with a focus on land use and land cover
classification using SITS.

This work presents innovative methods for using the full
depth of satellite image time series for extracting information
from big Earth observation data. We have developed a full
open source architecture that allows efficient processing of
large-scale data sets, coupled with advanced data analytic
methods. Our focus is on extracting the most information
from dense time series of remote sensing satellites such as
MODIS, LANDSAT, and SENTINEL, or combinations of
those.

2. DESIGN DECISIONS

The e-sensing architecture has been designed with a dif-
ferent perspective than other proposals for Earth Observation
Data Cubes [1]. We believe the gains of using big EO data
will come from new analytical methods, and our design
reflects such aim. A key decision for big EO architectures is
the choice of programming environment. We chose R, which
has more than 11,000 packages for statistical computing
and graphics, including spatial analysis, time-series analysis,
classification, clustering, and machine learning. Using R,
it is easier for researchers to develop new methods and to
collaborate with their peers. SciDB has a streaming interface
that runs R scripts in parallel directly on each server (Figure
1). Combining array DBMS with R statistical computing is a
natural solution for EO applications, allowing a good balance
between massive parallel data processing and maximum
flexibility in algorithm design.

Scientists also need tools for small-scale testing and for
scaling up their work. We developed two web services to
support these tasks [10]. The Web Time Series Service
(WTSS) retrieves time series of Earth observation data for
specific locations. The Web Time Series Processing Service
(WTSPS) enables users to run R scripts on data cubes of
Earth Observation data. These Web Services enable scientists
to test their analysis methods first on their desktops and then
move them to big EO data cubes.

Based on these considerations, the e-sensing architecture
uses the following building blocks:

1) The SciDB open source array database [4] that allows
easy mapping of big EO data to its data structure.

Fig. 1: Remote execution of R scripts in SciDB

2) R as the tool for big data analytics, so that researchers
can thus scale up their methods, reuse previous work,
and collaborate with their peers.

3) The R packages SITS [11] and dtwSat [12], for big
EO analytics on satellite image time series.

4) Web services (WTSS and WTSPS) for big EO data,
adapted to the needs of satellite image time series [10].

5) The architecture is fully open source, being made
available online at https://github.com/e-sensing/.

3. MATCHING DATA INFRASTRUCTURES TO
ANALYTICAL NEEDS

Most studies on time series for land cover classification
in the literature use classical remote sensing methods [6].
For multiyear studies, researchers derive ‘’best-fit” yearly
composites and then classify each composite image separately.
The results from different periods are compared to detect
change. We denote these works as taking a space-first, time-
later approach.

Space-first, time-later methods do not use the full potential
of remote sensing time series. The benefits of SITS increase
when the temporal resolution of the big data set captures
the most important changes. In these cases, the temporal
autocorrelation of the data will be stronger than the spatial
autocorrelation. Given data with adequate repeatability, a
pixel is more related to its temporal neighbours than to its
spatial ones. In these cases, time-first, space-later methods
lead to better results than the space-first, time-later approach.

There has been much recent interest in the Earth ob-
servation community on using advanced statistical learning
methods such as support vector machines [13] and random
forests [14]. However, most researchers still use a space-first,
time-later approach in connection with these methods. The
dimensions of the decision space are limited to the number of
spectral bands or their transformations. These approaches do



not use the power of advanced statistical learning techniques
to work on high-dimensional spaces and with big training
data sets [15].

The analytical methods of the e-sensing architecture
combine data from image time series with statistical learning,
using a time-fi rst, space later approach. These methods
use the full depth of dense time series to train advanced
predictive models. These model include linear and quadratic
discrimination analysis, support vector machines, random
forests and neural networks. In a typical classification
problem, we use time series with known land cover labels to
derive measures that capture class attributes. Based on these
measures, referred as training data, we provide support to
select a predictive model that allows inferring classes of a
larger data set.

Our proposal uses the full depth of satellite image time
series to create large dimensional spaces. The method we
developed has a deceptive simplicity: use all the data
available in the time series samples. The idea is to have as
many temporal attributes as possible, increasing the dimension
of the classification space. Our experiments found out that
modern statistical models such as support vector machines,
and random forests perform better in high-dimensional spaces
than in lower dimensional ones.

To illustrate the approach, Figure 2 shows the plot of
the NDVI values of 370 time series for land cover class
” Pasture” , based on ground samples. Each thin line is one
time series. The darker lines are the median and first and
third quartile values. By visualizing the data, the challenge
of distinguishing noise from natural variation becomes clear.
The data shows natural variability due to different climate
regimes and shows noise associated to cloud cover. To avoid
losing information, we use the raw data such as this one to
train a support vector machine, a classifier which is robust
to noisy data sets.

Fig. 2: Time series of 370 ground samples for land cover
class ” Pasture” in the state pf Mato Grosso, Brazil (source:
authors).

As a case study, we developed a detailed land use change
map of the state of Mato Grosso, Brazil, an area of 900,000
km2, which has about 20 billion time series measures. We

used the MODIS MOD13Q1 product from 2001 to 2016,
provided every 16 days at 250-meter resolution, with 23
samples per year. By taking samples of labelled time series
with 4 bands, we feed the statistical inference model with
a 92-dimensional attribute space. For the analysis, we used
the Normalized Difference Vegetation Index (NDVI) and
the Enhanced Vegetation Index (EVI), and the near infrared
(NIR) and middle infrared (MIR) bands. We defined nine
classes (see Table 1 that include the most important crops and
production systems in Mato Grosso. Based on a 5-fold cross
validation, we estimate an overall accuracy of 94% and the
Kappa index was 0.92. Producer’s and user’s accuracies of all
classes were close to or better than 90%. This confirms the
applicability of the proposed method in classify agricultural
areas. In general, results show good discrimination between
different crops, which improves on previous work [16], [17],
[18].

Table 1: Confusion matrix of MODIS time series images,
obtained by 5-fold cross validation of classification of field
data, and values of producer’s accuracy (PA) and user’s
accuracy (UA) for each class.

1 2 3 4 5 6 7 8 9 UA
1 Cerrado 393 0 0 12 0 0 0 0 0 0.97
2 Fallow-Cotton 0 33 0 0 1 2 0 0 0 0.92
3 Forest 1 0 136 0 0 0 0 0 0 0.99
4 Pasture 6 0 1 357 3 1 0 5 0 0.96
5 Soy-Corn 0 1 1 1 352 18 0 26 4 0.87
6 Soy-Cotton 0 0 0 0 13 376 0 4 0 0.96
7 Soy-Fallow 0 0 0 0 0 0 88 0 0 1.00
8 Soy-Millet 0 0 0 0 25 2 0 199 2 0.87
9 Soy-Sunfl ower 0 0 0 0 4 0 0 1 47 0.90
PA 0.98 0.97 0.99 0.96 0.88 0.94 1.00 0.85 0.89

4. COMPUTING PERFORMANCE
The architecture has been implemented operationally at

Brazil’s National Institute for Space Research. In terms of
hardware, our architecture uses 2 clusters. Each cluster has 5
servers with 2 CPUs with 6-cores each, operating at 2.4GHz
with a 15MB cache. Each server has 96 GB of RAM, and 16
TB of data storage. This gives 60 cores per cluster that can
work in parallel in a ” shared-nothing” data storage. The array
database SciDB includes the full set of MODIS MOD09Q1
images at 250 meter resolution for South America, with
13,800 images associated to 317 billion data series. It also
include selected datasets of mixed LANDSAT-8 and MODIS
data sets, at 30 meter resolution.

In terms of performance, the classification scales up almost
linearly. The full processing of all time series to classify 16
years of data in Mato Grosso state (900,000 km2) takes about
6 hours using the R-SciDB interface. We also processed all
of the area of Brazil’s Cerrado biome (2,050,000 km2) in
about 13 hours. This shows that distributed processing with
a right degree of granularity can compensate for the slower



performance of R scripts, compared with compiled languages.
By using R, researchers have much flexibility when designing
data analysis methods. Given these results, we argue that
using SciDB combined with R is an adequate solution for
big Earth Observation data analytics.

Table 2: Performance time for selected case studies

Case Study Area Decision Measures Proc time
(km2) dimensions (GB) (hours)

Mato Grosso 900,000 92 135 6
Cerrado 2,050,000 92 308 13

5. FINAL REMARKS
This paper discusses the design of an architecture that

allows using satellite image time series with advanced
statistical learning. Its results indicate that solutions based
on array DBMS, R algorithms, and dedicated web services
are well suited for satellite image time series analysis. This
knowledge platform expands what can be done with big EO
data, allowing scalability and reproducibility, without major
compromises in performance. In the long run, it shows that the
time-first, space later approach is an important complement
of more traditional image analysis methods.

Combining array databases with R statistical computing
is not an universal solution for big Earth observation data
analysis. Alternative designs such as the Australian Data Cube
(flat files) and Google Earth Engine (MapReduce) provide
support for important studies is cases where the analysis
methods are established and the novelty comes from applying
them to big data. In areas where the current methods are not
adequate and progress is required, such as global land cover,
it is important to design new architectures such as the one
proposed in the paper. We hope that our results encourage
further work on the use of satellite image time series for
land cover classification.
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Abstract. The answers to current our planet’s problems could be hidden in gi-
gabytes of satellite imagery of the last 40 years, but scientists lack the means
for processing such amount of data. To answer this challenge, we are build-
ing a scientific platform for handling big Earth observation data. We organized
decades of satellite images into data cubes in order to put together data and
analysis. Our platform allows to scale-up analysis to larger areas and longer
periods of time. However, we need to provide scientists with tools and mecha-
nisms to test and refine their routines before interacting with the Big data hosted
in our platform.
We believe that web services along collaborative analysis environments fit the
hypothesis-test pattern followed by researchers while writing scientific computer
code. Web services enable us to embed our platform’s data and algorithms into
collaborative analysis environments such as Jupyter notebooks.
To make our case, we prepared a Jupyter notebook where Earth observation
scientists can interact with our platform through web services and the analytic
capabilities of the programming language Python.

Resumo. As respostas aos problemas globais atuais podem estar ocultas em
gigabytes de imagens de satélite de observação da Terra adquiridas nos últimos
40 anos, mas nem sempre os cientistas possuem os meios para processá-las e
transformá-las em informação. Para responder a esse desafio, estamos cons-
truindo uma plataforma cientı́fica para processar grandes volumes de dados
de observação da Terra. Para isso, nós organizamos décadas de imagens de
satélite em cubos de dados, a fim de juntar dados e análises. Nossa plata-
forma, está sendo concebida para permitir a anĺise de grandes ŕeas com dados
de longos perı́odos de tempo mais longos. No entanto, precisamos fornecer aos
cientistas ferramentas e mecanismos para testar e refinar suas rotinas antes de
interagir com os dados hospedados em nossa plataforma.
Acreditamos que os serviços Web e os ambientes de análise colaborativos encai-
xam com o padrão de hipótese-teste seguido pelos pesquisadores. Os serviços



da Web nos permitem incorporar os dados e algoritmos da nossa plataforma em
ambientes de análise colaborativa, como os Jupyter notebooks.
Para testar nossa hipótese, nós preparamos um Jupyter notebook onde cientis-
tas da observaço da Terra podem interagir com a nossa plataforma através de
serviços web e as capacidades analı́ticas da linguagem de programação Python.

1. Introduction

Earth observation scientist are unable to use all the available images in their analy-
ses because processing such volume of data demands large hardware resources, new
software tools, and sound analysis techniques. These issues and requirements asso-
ciated to large amounts of data are commonly addressed as the data deluge or big
data [Bell et al. 2009, Boyd and Crawford 2012, Li et al. 2016]. Besides, the current
satellite image distribution model is based on files. These files have their own formats and
access interfaces. This distribution model had led to problems such as data duplication and
the inability to track the files used or required for each analysis. The data used for Earth
Observation analysis are either unavailable or just too large for independent result valida-
tion which in turn, boosts the scientific reproducibility crisis [Baker 2016, Nature 2016].
For these reasons, we are putting together data and analysis by means of a platform for
handling big geospatial data. We are using our platform to research land use and land
cover change.

As the amount of data increases, it is more efficient to move the algorithms to the
data than the other way around [Borthakur 2007]. However, the conditions and mecha-
nisms by which scientists move their algorithms to our platform is unknown; we would
like scientist to focus on analysis and to forget about data structures and computing scal-
ability.

We acknowledge how troublesome is the process of writing computerized scien-
tific analysis routines and we are committed to make easier for scientists to scale up their
analysis from the desktop to our platform. We believe the best moment to make our data
and analysis available to scientist is at the earliest stages of their analysis. This approach
can diminish the amount of rework implied while scaling up analysis.

Unfortunately, each scientist writes analysis routines on its own way. However,
it is known they keep notebooks with descriptions, data and results of their experiments.
Apart from this, Donald Knuth introduced literate programming as a way to develop, doc-
ument, and publish scientific algorithms relying in both natural and machine language.
Furthermore, Jim Gray proposed Overlay Journals as means to share, manage, and im-
proved scientists’ notebooks [Knuth 1984, Gray 2009]. These ideas are being taken to the
web in the form of electronic scientific notebooks which are on-line, collaborative docu-
ments that mix code, data, descriptions, and tables to summarize the results of scientific
research[Pérez and Granger 2007].

We believe that web services along collaborative analysis environments fit the
hypothesis-test pattern followed by researchers while writing scientific computer code.
Web services enable us to embed our platform’s data and algorithms into collaborative
analysis environments which are electronic approximations to the scientists’ notebooks
and laboratory journals.



In this paper, we examine how our platform can be integrated into the analysis
workflow of Earth observation data. To achieve this, we briefly introduce our computing
platform and its web services(section 2 and 3). Then, we describe analysis environments
and how the into into the scientists’ workflow (section 4). Finally, we test our approach by
setting up Jupyter notebook — a collaborative analysis environment — in which we mix-
ture the web services provided by our platform and the analysis analytical tools provided
by the Python programming language.

2. The e-sensing platform

The e-sensing 1 project aims to build a platform for handling big geospatial data in order
to help scientists to research land use and land cover change. We are organizing decades
of satellite images into cubes — tridimensional space-time arrays —- inside our platform
and finding the best way to put together data and analysis. The e-sensing project is ran by
the Brazilian National Institute for Space Research (INPE).

The main requirements to these platforms are analytical scaling, software reuse,
collaborative work, and replication. Analytical scaling is about allowing users to move
their data and code between platforms of increasing processing capacities with little or
no modifications at all. Software reuse means the platform must be able to use code
from different origins. Collaborative work and replication are about enabling scientists
to share and replicate their results [Câmara et al. 2016, Stonebraker et al. 2009]. We are
addressing the software reuse, collaborative work, and replication by using open source
and open access software and data. For example, inside our platform, we are only using
open source software and open access data provided by NASA. But in this document we
are addressing only the first step in the analytical scaling requirement.

Our platform is hosting an array database with both MODIS and LANDSAT im-
ages. We have been classifying time series of vegetation indexes of the Amazon forest
into classes of Land Use and Land Cover Change (LUCC). In post-processing stages,
we analyze the trajectories of LUCC over time [Assis et al. 2016, Camara et al. 2016,
Lu et al. 2016, Maciel et al. 2017, Maus et al. 2016]. But the data workflow inside our
platform relies on a mixture of technologies such as scripting languages (R, Python,
Bash), distributed storage (SciDB, Hadoop), and operating system tools. As a result, it is
hard for scientists to reproduce our results or to run their own [Câmara et al. 2016]. As
mentioned earlier, we chose web services as the way to expose our platform computing
capabilities while hiding its internal complexities.

On the other hand, the CEOS Data Cube Platform (CEOS-ODC) is a platform
for storing, accessing, and managing metadata of remotely sensed data. CEOS-ODC is
build on top of the Australian Geoscience Data Cube. Both platforms — e-sensing and
CEOS-ODC — are interested in processing large amounts of satellite imagery and using
open source tools. However, they use different type of analysis and architectures. While
e-sensing is focused on time series analysis, the analysis supported by CEOS-ODC puts
spatial before temporal analysis. Regarding architectures, e-sensing is built on top of array
databases while CEOS-ODC is built around the programming language python and data
files; this difference is subtle but important since databases are independent of program-

1e-sensing project http://www.esensing.org/



ming languages. As a consequence, the e-sensing platform is able to run analysis written
in different languages while CEOS-ODC is constrained to python scripts [CEOS 2016].

3. A web service for retrieving time series

Sharing and re-using computer resources has been important since the 90s because writing
software is error-prone and high performance hardware is expensive. Nowadays, Web ser-
vices are the most common way to address this matter. Web services are the standardized
way to access software and data over the World Wide Web independently of operating
systems and programming languages. Through them, scientists can access the data and
algorithms available in our platform and at the same time, web services hide complexities
— such as mixed technologies, and distributed storage — behind an uniform interface.

The Web Time Series Service (WTSS) retrieves time series of Earth Observation
data for specific locations. WTSS reduces the gap between data and remote-sensing time-
series clients through a simple JSON representation. Traditionally, assembling time series
of Earth Observation imagery is a time-consuming task because users need to sequentially
open several image files, extract some pixels, and then store them. Instead, WTSS con-
nects to an multidimensional array database and makes temporal queries on behalf of
the client. WTSS exposes three main operations list coverages, describe coverage, and
time series. list coverages returns a JSON list of the available coverages in the service.
describe coverage retrieves metadata of a specific coverage. Finally, the time series oper-
ation retrieves specific time series [Vinhas et al. 2016]. WTSS implementation is publicly
available on-line 2.

Moreover, WTSS has clients for the QGIS software and for the scripting languages
R and Python. These WTSS clients enable scientists to access our data from on-line
analysis environments.

4. Interactive and collaborative analysis environments

Literate programming is an style of coding software in which programs are treated as
pieces of literature. That is, natural and machine languages are weaved together into
a document where thought order prevails over code optimizations. Its goal is to create
programs easier to understand and maintain and to achieve this, literate programming
makes explicit the reasoning behind the code [Knuth 1984].

Note how literate programming fits the way scientists analyses their data. Once
data is collected, scientists make research questions, then formulate hypotheses for later
testing them on the data. The question making and hypothesis formulating is better de-
scribed using natural language while data processing and hypothesis testing are automated
using code.

The modern realization of literate programming are the on-line analysis envi-
ronments. Using modern technologies, they add collaboration and interactivity to the
traditional scientific notebooks and laboratory journals. Some examples are the R3 and
Jupyter4 notebooks. It is worth noticing that R notebooks are focused in R while Jupyter

2e-sensing code repository https://github.com/e-sensing/
3R Notebooks http://rmarkdown.rstudio.com/r_notebooks.html
4The Jupyter Notebook https://ipython.org/notebook.html



notebooks support various programming languages. For this reason, we preferred the
latter in this paper.

Statistical data analysis is crucial to science. From the computing perspective, the
most popular and powerful computing tools for statistical analysis are R and Python. R is a
computing environment designed for statistical analysis while Python is a general purpose
programming language focused on readability and extensibility. Both support numerical
processing, statistical data structures; the former natively while the latter trough code
libraries such as SciPy [Ihaka 1998, Jones et al. 01 , OGrady 2016]. Both R and Python
are supported by large communities of users coming from either the field of statistics or
computer science. In this paper we preferred python because most of the author come
from computer science field.

IPython adds facilities to Python for scientific computing. IPython has an interac-
tive command with tailor-made features for scientists, such as code completion, plotting,
and parallel and distributed processing. These characteristics are taken to the web in the
form of Jupyter notebooks [Kluyver et al. 2016]. For example, the data and algorithms
regarding the recent astronomic discovery of gravitational waves are available as Jupyter
notebooks [Dal Canton et al. 2014, Usman et al. 2016, Nitz et al. 2017].

5. Analysis of time series of vegetation indexes
To test our approach, we setup up a Jupyter notebook for the exploratory analysis of
time series of vegetation indexes. The time series are provided through a WTSS server
attached to a cube hosted in the e-sensing platform. Our notebook is publicly available5.
In this notebook, we mix the web services provided by our platform and the analysis
analytical tools provided by the Python programming language. Our notebook presents
three common jobs regarding time series of vegetation indexes: Exploratory analysis,
filtering or smoothing, and classification. Figure 1 is an screen-shot of our notebook
running on a web browser.

In the exploratory analysis, we get the data and then plot the time series and its
location on a map. Figure 2 shows how to retrieve MODIS data into a data frame which
is a table-like data structure.

Once the time series is formated as a data frame, it is simple to apply on it
functions that receive and return data frame’s columns as parameters. In this way, we
smoothed our time series using the Kalman filter, the Fourier decomposition and the
Whittaker smoother. The Kalman filter is well known in aeronautics while Fourier and
Whitaker are known as good estimators of vegetation phenology [Atkinson et al. 2012,
Grewal and Andrews 2010]. For example, Figure 1 shows the code and the application
the Whitaker smoother to time series of vegetation indexes in a web browser.

The last example in our Jupyter notebook is classification. We used Dynamic Time
Warping (DTW) to classify time series of vegetation indexes [Berndt and Clifford 1994].
DTW is an algorithm that computes a similarity measure — a distance — between two
time series. Given a set of time series of known land coverages (the patterns), we compute
the DTW distances to a time series of an unknown land cover (the samples). The samples

5Python for Data Science in Earth Observation Analysis http://github.com/e-sensing/
wgiss-py-webinar



Figure 1. An on-line analysis environment for time series of Earth observation
data. This environment displays a textual description of the Whitaker smoother
along its Python implementation and its results when applied to a time series of
vegetation indexes.

are assigned to the labels of the patterns with the shortest DTW distance.

We prepared a set of pattern time series corresponding to the land covers cerrado
and forest. We also collected a set of sample points from which we know the latitude, the
longitude and the land cover over a specific time interval; then we retrieved the time series
of these points using WTSS. Figure 3 shows the time series of both pattern and samples.
Figure 4 shows the code required to read the prepared files, retrieve the time series and to
do the classification.

In summary, we joined data and analysis environments in order to plot, filter,
and classify time series of Earth observation data by means of Jupyter notebooks and
web services. This approach is fl exible as users can use the same data and web services
over different programming languages and analysis environments. For example, we setup
another notebook using R, which is an statistical programming language. We do not
describe this R notebook here because of lack of room, but the code is available on-line. 6

6e-Sensing: Big Earth observation data analytics for land use and land cover change information
https://github.com/e-sensing/SITS_R_notebook



import pandas as pd
from wtss import wtss
from tsmap import *
w = wtss("http://www.dpi.inpe.br/tws")
latitude = -14.919100049
longitude = -59.11781088
ts = w.time_series("mod13q1_512", ("ndvi", "evi"), \

latitude, longitude)
ndvi = pd.Series(ts["ndvi"], index = ts.timeline) * \

cv_scheme[’attributes’][’ndvi’][’scale_factor’]
evi = pd.Series(ts["evi"], index = ts.timeline) * \

cv_scheme[’attributes’][’evi’][’scale_factor’]
vidf = pd.DataFrame({’ndvi’: ndvi, ’evi’: evi})

Figure 2. Get a time series into a Python pandas data frame.

Figure 3. Patterns (top) and samples (bottom) of NDVI time series for classifi ca-
tion.

from dtw import *
from tools import *
patterns_ts = pd.read_json("examples/patterns.json", orient=’records’)
patterns_ts["timeline"] = pd.to_datetime(patterns_ts["timeline"])
samples = pd.read_csv("examples/samples.csv")
samples_ts = wtss_get_time_series(samples)
classification = classifier_1nn(patterns_ts, samples_ts)

Figure 4. Python code for classifying time series using Dynamic Time Warping.



6. Conclusions

In this paper, we discussed how literate programming is being taking to the Web as inter-
active and collaborative analysis environments. We also showed how this environments
are enhanced with web services and how both — environments and services —-help sci-
entists to prepare their analysis routines. We set up a Jupyter notebook in which we
analyzed data retrieved by the Web Time Series Service. In this way, we showed how to
display, filter, smooth and classify time series of vegetation indexes. This is a convenient
for scientists not only to interact with time series of Earth observation data but also to pre-
pare their analysis routines before running them on big Earth observation data platforms
such as e-sensing.

Web services close the gap between big Earth observation data and analysis tools
by means of collaborative environments for small amounts of data. As the amount of data
to be processed increases, it is better to send the analysis routine to the data which is an
ongoing effort at the e-sensing project.

Finally, we would like to remark that the aforementioned the Jupyter notebook,
the Web Time Series Service, and the analysis routine are available on-line to everyone at
http://github.com/e-sensing/wgiss-py-webinar.
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Abstract

This document presents the achievements of the sub-project Tools for satellite image

management in array databases (FAPESP process 2016/03397-7) which is part of the

project e-Sensing: Big Earth observation data analytics for land use and land cover

change information (FAPESP 2014/08398-6). The sub-project consists on developing

tools for the array database SciDB to load large amounts of satellite images.

In the last 12 months we continued the project development by designing new schemata

to include more Earth observation data in our database. We also reported our results in

international articles, posters, and presentations. We kept our database updated to the

newest releases and we improved the data loading scripts. Finally, we answered the data

requirements of our users.
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Summary of the project

This project is part of the FAPESP project e-sensing (grant 2014/08398-6). Speci�cally,

it corresponds to the task Building and deployment of big Earth observation databases to

support data analysis and use cases [1].

The e-sensing project addresses the scienti�c question How can we use e-science

methods and techniques to substantially improve the extraction of land use and land cover

change information from big Earth Observation data sets in an open and reproducible

way? Currently, scientists do not take advantage of the full potential of the freely avai-

lable satellite images. Instead, they produce land cover maps taking either a single or

at most two time references. As a result, the big data sets produced by remote sensing

satellite are underemployed. The e-sensing project is about conceiving, building, and

deploying a new type of knowledge platform for organizing, accessing, processing and

analyzing big Earth observation data [1].

The e-sensing project is framed by the fast land cover and land use change and its

global consequences on the Earth's systems. As the human population grows, it also

grows the demand of resources from the environment. These demands are satis�ed by

changing the use � and in consequence, the cover � of the Earth. As the surface of the

Earth is �nite, mankind development is jeopardized [2, 3]

Human beings have been changing Earth surface to satisfy their needs for millennia.

However, it is just until recently when we acquire the capacity to collect massive amounts

of data to study the changes of Earth's surface. Satellite images date back to the 70s;

they contain detailed traces of human development for the last 50 years and they are now

publicly available [4].

However, scientist are unable to use all the available images in their analyzes because

processing such volume of data demands large hardware resources, new software tools,

and sound analysis techniques. These issues and requirements are known as the data

deluge or more commonly as big data [5, 6, 7].

The current satellite image distribution model is based on �les. These �les have their

own formats and access interfaces. This distribution model had led to problems such

as data duplication and the inability to track the �les used for speci�c analysis. This

contributes to the already existent reproducibility crisis in science; speci�cally, the data

used for Earth Observation analysis are either unavailable or just too large for independent

1



result validation [8, 9].

Independently of format or interface, images are stored and manipulated using an ar-

ray pattern. Arrays are well-known structures for scientists, take for example the Network

Common Data Form (NetCDF) and Hierarchical Data Format (HDF). Recently, compu-

ter scientists have mixed the array abstraction with the features of relational databases

into what has been called array databases. Array databases add versioning, scalability,

and fail-tolerance capabilities to the array abstraction [10, 11, 12, 13, 14].

As a solution to the aforementioned issues, the e-sensing project proposes an open-

source knowledge platform for big Earth Observation data. Such platform would provide

a homogeneous interface to organize, access, process, and analyze spatiotemporal data

using by means of array databases. In this way, scientists will analyze and test their

hypotheses using data with a larger extents and �ner resolutions than before. Likewise,

this platform will enable reproducibility as any scientist can reproduce anyone else results

using the same data and interfaces [1].

The e-sensing project team chose SciDB as the array database to support the proposed

knowledge platform. SciDB is an open source array database optimized for big data

and analytics. SciDB is developed and maintained by the Massachusetts Institute of

Technology. SciDB splits and distributes data among several servers following a shared

nothing architecture paradigm [15, 16].

To achieve its goals, the e-sensing project proposed three work packages (WP) [1]:

1. Databases: This WP is about researching and developing array databases to store

large Earth Observation data sets. It also develops work �ows and methods for

e�cient storage, access and processing of large data sets.

2. Data analysis: This WP is about researching and developing spatiotemporal te-

chniques for extracting change information on large Earth Observation data sets.

This is relevant, for example, for forestry applications. This WP includes �nding

novel applications of remote sensing time series, and combining time series with

multitemporal image processing.

3. Use case development: This WP comprises the development of applications for

forestry and agriculture management where large Earth Observation data sets are

useful. The use cases derived from these applications will validate the methods and

data developed by the other work packages.

The �rst work package, databases, is composed of the tasks Building and deployment

of big Earth observation databases to support data analysis and use cases and also Extend

2



SciDB for geographical data handling. The �rst one is concerned with the data required

to perform analysis and the second one deals with the semantics and interoperability of

spatial data. Together, this two tasks provide the foundations for the remaining work

packages as they provide the e-sensing platform users with data sets and operations

required by Earth Observation scientists. This report is concerned with the former task,

which is split in three parts:

1. Database building. This task consists on loading satellite images to an array data-

base.

2. Radiometric correction module. Radiometric correction allows the comparison of

satellites images. As satellite images di�er on spatiotemporal coverage, radiometric

correction removes unwanted in�uences such as atmospheric e�ect (such as haze)

or sensor errors.

3. Geometric correction module. Geometric correction is concerned with adjusting

images in such a way that features of interest overlap.

The sub-task database building includes the following data sets:

• The MODIS MOD09Q1 and MOD13Q1 images at 250 meter and weekly resolutions

with temporal extent from 2000 to 2014 and the spatial extent of South America.

This data set has a size of 15 Terabytes.

• Part of INPE's LANDSAT-5 data collection. Its temporal extent goes from 1984

to 2012, the spatial extent covers Brazil with temporal resolution of 6 coverages a

year. This data set has a size of 30 Terabytes.

• A data selection of satellites SENTINEL-2A, CBERS-4 and LANDSAT-8. The size

of this data set is 10 Terabytes.
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Achievements of the period

Database building

This sub-task can be divided into the database scheme, the tools to upload data, and the

data uploaded. The details are below.

Database schema

Satellite images are two-dimensional numeric representation of certain properties of some

segment of Earth's surface. Their two-dimensional nature is easily represented using

arrays and, as a consequence, they nicely �t in array databases.

SciDB is a database able to handle large amounts of data through array abstractions

and query languages. SciDB splits arrays into chunks which are distributed across the

database's servers. Users control the way SciDB arranges data through array schemata.

Schemata are de�ned in terms of dimensions, chunk sizes, overlaps, and attributes. The

dimensions are the coordinate system used to create, read, and update data while the

chunk sizes shape the units of storage on each dimension. The overlap parameters state

the amount of data duplicated in the chunks' boundaries and the attributes are the actual

contents of the arrays [16].

In our last report, we described the SciDB schema for MODIS data. It consisted

on dimensions (col_id, row_id, and time_id), chunksizes (75, 75, 400), and no overlap

between chunks. The attributes of each array correspond to each band in the image. In

this schema, the spatial and temporal dimensions are absolute, meaning that every pixel

in any MODIS image is uniquely referenced. We've made a slight change to this schema,

we switched the chunk sizes to (40, 40, 512) as they are easier to aggregate and divide in

order to match and join to other schemata.

However, Landsat and MODIS images are di�erent regarding spatial, temporal and

spectral resolution (see Figure 2.1). Their spatial reference system are di�erent and

when overlapped, their axis are oblique. Landsat spatial resolution is 10 times �ner

than MODIS and the number of pixel on each is also di�erent: MODIS 4800 x 4800

pixels while a Lansat 8 has 7600 x 7700. Both Landsat and MODIS provide images

each 16 days, but they di�er on pre-processing characteristics (i.e MODIS uses the best
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• Chunk Size. The chunk sizes for data loading are path=1, row=40, col_id=40,

row_id=40, and time_id=512. Since SciDB only stores the attribute data (and

not the dimensions), the Landsat and MODIS chunks have the same size in disk

despite the fact their schemata are di�erent. As a consequence, both have similar

performance.

• Overlap. The chunk overlap for Landsat and MODIS is zero, since these arrays

are meant to mainly serve time series. As mentioned before, Landsat images are

spatially overlapped and their overlap is not aligned to the images borders but to

the satellite's �ight direction. Fort this reason, the overlap property of SciDB's

schemata cannot address Landsat overlaps.

Database loading tools

In our last report, we introduced the modis2scidb-loader 3 tools. These python scripts

orchestrate the Extraction, Transformation, and Loading (ETL) processes of data.

Now, we are using the lessons learned from those scripts to write new ones � gdal2scidb 4

� focused on two things: The di�erent satellite image formats and the parallel loading

capabilities of SciDB. MODIS and Landsat data are delivered di�erently, the �rst uses a

Hierarchical Data Format (HDF) where a single �les stores all the image bands while the

second uses one GeoTIFF �le for each band on a single image; likewise, other satellites

and data products deliver data using other formats.

These new scripts are built on top of Python modules which eases code reuse and

adaptability to new imagery formats and to new SciDB versions. The new scripts hide

the format complexities using the ImageSeries abstraction. An ImageSeries is a set of

images of the same satellite, sensor, path and row but di�erent acquisition time. The

scripts are able to build ImageSeries objects from imagery and load the data to SciDB,

independently if the imagery is MODIS, Landsat or Sentinel.

As the old scripts, the new ones use GDAL to read and transform the data into

SciDB's binary format. Then, using the data is loaded using the Operating System and

SciDB parallel processing capabilities [16, 19]

3SciETL - Extract, Transform and Load of Geospatial Data for SciDB https://github.com/

e-sensing/scietl
4gdal2scidb - Python scripts for exporting a raster (supported by GDAL) to SciDB binary format

and CSV https://github.com/albhasan/gdal2scidb/tree/dev
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Uploaded data

• MODIS collection 6. Vegetation index product MOD13Q1 (in progress). These

data are being uploaded because of the update from SciDB version 15 to version

16.

• Landsat 8. Collection 1, surface re�ectance (in progress).

• Tropical Rainfall Measuring Mission. Satellite estimations of rainfall in the tropics.

Radiometric and geometric correction modules

The radiometric module is under development. Using the database language, we have

tested basic radiometric corrections.

However, as mentioned earlier, MODIS and Landsat imagery are being adapted to

time-series analysis and data cubes by implementing uniform radiometric and geometric

corrections on their archives. These changes match the guidelines provided by organi-

zation such as the Committee on Earth Observation Satellites 5, and the Open Data

Cube 6, which are coordinating international e�orts in order to manage and organize

satellite imagery. As a result, it is expected other sources of imagery will also deliver

their images as Analysis Ready Data (e.g. the European Sentinel program).

As the imagery is made available with geometric and radiometric corrections (e.g.

MODIS, Landsat collection 1 surface re�ectance), the relevance of this module diminishes

and for that reason is no longer a priority.

Other activities

Here we introduce other activities related to the ful�llment of this research project:

• Development of bash scripts to create time-series of MODIS vegetation indexes

using the GeoTIFF format. These scripts create a single Geoti� image that in-

cludes the complete time series of a MODIS band. The GeoTIFF format is easier

to consume by client-side analysis applications such as those provided by the pro-

gramming language R. These scripts are available on-line at https://github.com/

albhasan/hdf2tif

5CEOS http://ceos.org/
6Open Data Cube https://www.opendatacube.org
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• Development of R scripts for processing time series using SciDB's stream. These

scripts allow SciDB to run user-provided routines of analysis of vegetation indexes.

Available on-line https://github.com/albhasan/sdbStreamR4ts

Impact assessment

The impact of the e-sensing platform can be assessed by the data and services provided

by it as well their associated publications (see Chapter 3). 7

These achievements are supported by the SciDB array database and its schemata,

which enable the development of analysis tools. The database loading tools enable buil-

ding spatiotemporal arrays made of satellites images taken by di�erent sensors. The

results can be seen as the uploaded data allowed the publications of several articles.

The experience and lessons learned by the e-sensing project sta� are valuable for

international organizations such as the Committee on Earth Observation Satellites, which

whom we are sharing knowledge regarding big Earth data management.

7For a publication list, visit the e-sensing website http://esensing.org/
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Participation in scienti�c events

The author of this report took part of the following:

1. Presentation of �Reproducible geospatial data science: Exploratory Data Analy-

sis using collaborative analysis environments�. In this presentation, we introduced

how to use the data and services provided by the e-sensing platform in order to

analyze time series of vegetation data, using on-line, open-source tools. Presented

at the XVIII Brazilian Symposium on Geoinformatics on December 2017. Avai-

lable online http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m16c/2017/

12.01.19.04/doc/1sanchez_camara.pdf

2. Presentation of the paper �The e-sensing architecture for big Earth observation

data analysis� and the poster �Big Earth observation data for fast detection of

deforestation using adaptative �ltering� at the 2017 Conference on Big Data from

Space (BiDS'17). Here we presented the e-sensing platform and some partial results

of the application of �ltering to time-series of vegetation indexes to detect changes

associated with deforestation. BiDS'17 took place in Toulouse, France on November

2017.

3. Short presentation about analysis of time series of vegetation indexes using the

Python programming language. This is part of the Webinars from the CEOS Wor-

king Group on Information Systems & Services (WGISS) Technology Exploration

Subgroup on August 2017. This presentation enables other communities to popu-

larize the e-sensing platform and allowed us to meet other scientists working on

related topics. Available online: https://youtu.be/92Yg-57zkE4

4. Co-author of �Climate drivers of the Amazon forest greening�. This article exposes

the relation between seasonal leaf production and increments in insolation and

precipitation by using satellite and �eld observations [20].

5. Co-author of poster �Carbon Monoxide Measurements as a Biomass Burning Tracer

at the Amazon Basin� presented at the 19th WMO/IAEA Meeting on Carbon

Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-

2017) at Duebendorf, Switzerland, on August 2017.
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Abstract 

 

Brazil is one of the largest agricultural producers in the world and a leading producer 

of biofuels. However, the use of remote sensing images to provide estimates of crop yield is 

still limited. This is due to the limitations of current data analysis methods, which focuses on 

processing a single image. The expectation of this project is that methods of "big analytics 

data" can significantly improve the use of satellite image in the generation of information 

about crop yield in Brazil. This project will focus in the specification and validation activities 

on methods for agricultural monitoring using big Earth observation data. These methods 

should be based on analysis of satellite image time series. The tasks to be performed are: (a) 

Detection of planted area of soybeans, maize and sugarcane, rice and wheat crops in selected 

areas, using methods that process large scale satellite image time series; (b) Detailed 

assessment of big Earth observation data analytics for agricultural mapping. In this project 

will development analytical methods for detecting large agricultural areas in Brasil, with the 

specific tasks of mapping land cover associated to soybeans, maize and sugarcane. The project 

results will be compare with ground truth data, that will be acquired, and with results from 

IBGE (Brazil’s Census Bureau). The methods for agricultural monitoring should be developed 

in the R language and work with data stored in the SciDB array database.  
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1. Summary of the activities developed of the period 

 

The project entitled "Use of Remote Sensing Time Series for Brazilian Agriculture 

Monitoring" is part of the thematic project "E-Sensing: Big Earth observation data analytics 

for land use and land cover change information" (FAPESP grant 2014/08398-6), coordinated 

by Prof. Dr. Gilberto Camara. 

This project, whose purpose is to specify and validate activities on methods for 

agricultural monitoring using big Earth observation data. These methods should be based on 

analysis of satellite image time series.  

In the first year of this project the main activities developed were:  

(1) A bibliographical survey about the state of the art regarding the theme of the 

project and the main problems to be solved (Chapter 2); 

(2) The development analytical methods for detecting large agricultural area, with 

the specific tasks of mapping land cover associated to soybeans, maize, cotton, 

millet and sunflower (Chapter 3);  

(3)  Comparison of our results with ground truth data and with IBGE statics (Chapter 

4); 

(4) The creation of an article explaining the main results achieved in this first year, 

participation in scientific events, and contribution in other papers (Chapter 5)  

These activities are detailed in the next chapters. 
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2. Introduction 

 

Since the 1980s, Brazil has become one of the world’s largest agricultural exporters. 

Brazil is the world’s largest producer of sugarcane, coffee, orange juice, and the second 

producer of soybeans, beef and chicken meat. Brazilian crop and livestock producers face a 

major challenge. While producing food for a growing world demand, Brazilian agriculture has 

to contribute to the country’s commitments to reduce its deforestation rates and GHG 

emissions (Garnett, 2015). In the next decades Brazil needs to balance economic gains with 

sustainable practices in agriculture. To achieve this aim, Brazilian needs to increase its 

agricultural productivity, using cultivated land in more productive way (Nepstad et al., 2014). 

Brazil’s federal government has acted to reduce deforestation and resulting emissions. 

Combining rapid assessment of new forest cuts with strong law enforcement, Brazil cut 

tropical deforestation by 80% from 2005 until 2010 (Assunção et al., 2015). These initiatives 

were complemented by actions from the private sector, such as the Soy Moratorium. The 

moratorium is an agreement signed by the major soybean traders pledging not to buy soy 

grown in Amazon forest areas cleared after July 2008. During 2004 and 2005, 30% of soy 

expansion in this region occurred through deforestation. 

In 2014, only 1% of the new soy expansion in the Amazon biome resulted from direct 

conversion from forest (Gibbs et al., 2015). Despite these advances, the environmental 

impacts of crop production and cattle-raising in Brazil’s Amazonia and Cerrado biomes 

continue to raise concerns (Nepstad et al., 2014). To develop adequate public policies that 

balance production with protection, Brazil needs comprehensive information on land change 

dynamics. 

Previous studies in Brazilian agricultural dynamics have focused in the state of Mato 

Grosso, one of the world’s fast moving agricultural frontiers. Spera et al. (2014) use  satellite 

remote sensing to examine patterns of cropland expansion in Mato Grosso from 2001 to 

2011. They use the MODIS EVI time series, coupled with a decision-tree algorithm. Data from 

crop specific growing season lengths and maximum EVI thresholds was used to classify large-

scale croplands in five classes: soy, cotton, soy-maize, soy-cotton, and irrigated. The paper 

describes how crop expansion depends on land attributes such as soil, climate and 

topography. The authors found out that most suitable areas for cropland expansion in Mato 



 

5 
 

Grosso had been occupied by 2006. As a consequence, farmers increased double cropping 

systems to make up for the scarcity of high quality remaining agricultural land. Since the paper 

deals on how land quality affects farmers’ decision-making, it does not include accuracy 

assessments of the classification results. 

Arvor et al. (2011) use MODIS EVI time series to identify five crop classes: soybean, 

maize and cotton crops planted in single or double cropping systems. They assume that maize 

is only planted in consortium with soybeans. The authors collected ground data sets in 50 

farms in Mato Grosso on 2005–2006 and 2006-2007. The study uses a two-step classification 

method, first creating a cropland mask and then discriminating the crop varieties of interest 

inside the mask. To create the mask, they assumed that crop EVI profiles are identifiable as 

having one of two cycles with high maximum values and low minimum values. To classify crop 

types inside the cropland mask, they use the Jeffries–Matsushita (JM) distance to rank the 23 

dates of each MODIS EVI series. The authors use the best subset of these dates as inputs to a 

supervised classifier, followed by post-processing using segmentation to produce more 

homogeneous results. Reported accuracy is 85% for the agricultural mask and 74% for the 

crop classification, using validation data not included in the training set. 

To describe the spatial dynamics of crop production in Mato Grosso from 2001 to 

2014, Kastens et al. (2017) use MODIS NDVI time series. They take ground reference data 

from 2009 to 2016 to train and validate a random forest classification model. Reported 

accuracy was 79% for distinguishing five crop classes (soybean-fallow, fallow-cotton, 

soybean-cotton, and soybean crop). The soybean-crop class includes maize, millet, sorghum 

and sunflower, which the authors stated they could not distinguish well. 

Studies covering the whole Amazonia biome focus on deforestation and its relation to 

pasturelands. The PRODES system by Brazil’s National Institute for Space Research (INPE) 

maps clear cuts in the Amazon forest yearly, producing a forest/non-forest mask (Hansen et 

al., 2008). Hansen et al. (2013) produce global maps of forest cover change using LANDSAT-

class data. Parente et al. (2017) present maps of pastureland areas in Brazil using LANDSAT-8 

images. INPE, together with the Brazilian Agriculture Research Corporation (EMBRAPA), 

produced TerraClass, a map of land cover change in the Amazonia biome (Almeida et al., 

2016). TerraClass produces a cropland mask, and does not distinguish between different 

crops. These efforts are relevant and produce important data sets, but none provides a 

complete assessment of land cover change and its relation to different cropping systems. 
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There are no previous works in the literature that map both the dynamics of crop 

expansion and the land changes due to pasture expansion in Brazil’s agricultural frontiers. To 

address this challenge, we have developed new methods to produce consistent multi-year 

maps of the different types of land cover in Brazil. These maps provide information on crop 

production systems and pasture expansion into natural vegetation. The results enable an 

informed assessment of the interplay between production and protection in the Brazilian 

Amazonian and Cerrado biomes. 

This project proposes innovative methods for using satellite image time series to 

produce land use and land cover classification over large areas in Brazil. Using the full depth 

of the MODIS time series data to classify natural and human-transformed land areas in state 

of Mato Grosso, Brazil’s agricultural frontier. Our hypothesis is that building high dimensional 

spaces using all values of the time series, coupled with advanced statistical learning methods, 

is a robust and efficient approach for land cover classification of large data sets. 

The method improves on work by Arvor et al. (2011), Spera et al. (2014), and Kastens 

et al. (2017), by including non-crop cover types and providing a more detailed distinction 

between crops. 
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3. Material and Method 

 

3.1. Study area 

Mato Grosso (MT) has 903,357 km2 of extension, being the third largest state of Brazil. 

It includes three of Brazil’s biomes: Amazonia, Cerrado and Pantanal. The Cerrado biome 

covers 40% of the whole territory and is a important biome related a animals species (more 

than 1,500 species), birds (837 species), amphibians (150 species) and reptiles (120 species). 

The Pantanal, which occupies 7% of the state, is a bio-diversity rich biome, and is an UNESCO 

World Natural Heritage and Biosphere Reserve. In the Amazonia biome in Mato Grosso there 

are two types of forest: the Amazon Forest and the Seasonal Forest, which together occupy 

about 53% of the territory of Mato Grosso. 

 

3.2. Data 

We used the MOD13Q1 product from NASA from 2001 to 2016, provided every 16 

days at 250-meter spatial resolution in the Sinusoidal projection (Didan, 2015)1. To do the 

analysis, we selected the Normalized Difference Vegetation Index (NDVI) and the Enhanced 

Vegetation Index (EVI), and the original near infrared (NIR) and middle infrared (MIR) bands. 

We defined nine classes: (1) forest, (2) cerrado, (3) pasture, (4) soybean-fallow (single 

cropping), (5) fallow-cotton (single cropping), (6) soybean-cotton (double cropping), (7) 

soybean-maize (double cropping), (8) soybean-millet (double cropping), (9) soybean-

sunflower (double cropping). According to the Brazilian Institute of Geography and Statistics 

(IBGE), crop classes (4)-(9) accounted for more than 93% of MT agricultural land area in 2015. 

Crop and pasture ground data was collected by co-authors Coutinho, Esquerdo and Antunes 

through farmer interviews in October 2009 and in October 2013. Samples for cerrado and 

forest classes were provided by co-author Bergotti. Ground samples for soybean-fallow class 

were provided by co-author Arvor, based on his previous work (Arvor et al., 2012). Table 1 

lists the distribution of the ground samples. 

 

Table 1: Ground samples used as training data for Mato Grosso. 

                                                             
1 Since the 2004 MODIS image presented high amount of noise in the MIR band, results from 
2004 were not used in the analysis. 
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Class label Count Freq 

Cerrado 400 18.90% 

Fallow-Cotton 34 1.60% 

Forest 138 6.50% 

Pasture 370 17.50% 

Soy-Maize 398 18.80% 

Soy-Cotton 399 18.90% 

Soy-Fallow 88 4.20% 

Soy-Millet 235 11.10% 

Soy-Sunflower 53 2.50% 

 

To get an overall view of the temporal signatures of the ground samples, we use a 

generalized additive model (GAM) to estimate the joint distribution the set of samples for 

each class (Maus et al., 2016). The GAM estimates use a smoothing function that 

approximates the idealized temporal patterns. One can observe that the temporal signatures 

of classes soy-maize, soy-millet and soy-sunflower are similar, leading to some possible 

confusion. As our experiments show, these are the classes which are harder to distinguish. 

 

3.3. Method 

 

3.3.1 Combining satellite image time series with statistical learning methods 

This work combines SITS with statistical learning. In a broad sense, statistical learning 

refers to a class of algorithms for classification and regression analysis (Hastie et al., 2009). 

These methods include linear and quadratic discrimination analysis, support vector machines, 

random forests and neural networks. In a typical classification problem, we have measures 

that capture class attributes. Based on these measures, referred as training data, one’s task 

is to select a predictive model that allows inferring classes of a larger data set.  

There has been much recent interest in using classifiers such as support vector 

machines (Mountrakis et al., 2011) and random forests (Belgiu and Dragut, 2016). Most times, 

researchers use a space-first, time-later approach, where the dimension of the decision space 

is limited to the number of spectral bands or their transformations. Sometimes, the decision 

space is extended with temporal attributes. To do this, researchers filter the raw data to get 
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smoother time series (Brown et al., 2013; Kastens et al., 2017). Then, using software such as 

TIMESAT (Jönsson and Eklundh, 2004), they derive a small set of phenological parameters 

from vegetation indexes, like beginning, peak, and length of growing season (Estel et al., 2015; 

Pelletier et al., 2016). 

These approaches do not use the power of advanced statistical learning techniques to 

work on high-dimensional spaces and with big training data sets (James et al., 2013). They 

have one thing in common: raw time series data is considered too noisy to be used directly. 

This leads to the question: do noise removal and homogenization steps reduce the 

information present in the satellite image time series? 

An alternative approach, proposed in this project, is to use the full depth of satellite 

image time series to create larger dimensional spaces. We tested different methods of 

extracting attributes from time series data, including those reported by Maus et al. (2016), 

Pelletier et al. (2016) and Kastens et al. (2017). Our conclusion is that part of the information 

in raw time series is lost after filtering or statistical approximation. By choosing a statistical 

classifier which is robust to noise, one should be able to get better results than current 

approaches. Thus, the method we developed has a deceptive simplicity: use all the data 

available in the time series samples. The idea is to have as many temporal attributes as 

possible, increasing the dimension of the classification space. In this work, we used the MODIS 

MOD13Q1 product with 23 samples per year per pixel, and 4 bands (NVDI, EVI, nir and mir). 

By taking a series of labelled time series, we feed the statistical inference model with a 92-

dimensional attribute space. Our experiments found out that modern statistical models such 

as support vector machines, and random forests perform better in high-dimensional spaces 

than in lower dimensional ones. 

As an example, Figure 1 shows the plot of the NDVI values of 370 time series for land 

cover class ”Pasture”, based on ground samples. Each thin line is one time series. The darker 

lines are the median and first and third quartile values. By visualizing the data, the challenge 

of distinguishing noise from natural variation becomes clear. The data shows natural 

variability due to different climate regimes and shows noise associated to cloud cover. To 

avoid losing information, we use the raw data to train a support vector machine, a classifier 

which is robust to noisy data sets (Hastie et al., 2009). 
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Figure 1: Time series of 370 ground samples for land cover class ”Pasture” in the state of Mato 

Grosso, Brazil (source: authors). 

 

The support vector machine is a classifier which considers that the boundary between 

two classes is non-linear. In its simplest form, an SVM implements a linear classifier by 

defining boundaries in an n-dimensional space to distinguish two classes. SVMs build 

hyperplanes that represent the largest separation between the two classes. The hyperplanes 

maximize the distance from them to the nearest data point on each side. The training samples 

that define the hyperplane of maximum margin are called support vectors. There are many 

cases where the classes cannot be correctly distinguished by linear hyperplanes. In these 

situations, the SVM algorithm uses non-linear mappings to project the input vectors to a very 

high-dimension feature space. In this new feature space, the SVM builds a linear decision 

surface (Cortes and Vapnik, 1995). SVM implementations include polynomial and radial 

kernels to deal with non-linear class boundaries. In the case of noisy satellite image time 

series, we found out that using an SVM with radial kernels improves classification accuracy 

relative to the simpler linear kernel. 
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3.3.2 Computational infrastructure 

Progress on big EO data analytics depends on researchers developing and sharing new 

methods. Thus, an architecture for big EO data analytics should meet the needs of the 

researchers. Results should be shared with the scientific community, enabling collaborative 

work. Researchers should be able to replicate best practices and build their own 

infrastructure. To achieve these goals, our architecture uses the following building blocks:  

1. The SciDB open source array database (Stonebraker et al., 2013) that allows easy 

mapping of big EO data to its data structure. 

2. R as the tool for big data analytics, so that researchers can thus scale up their 

methods, reuse previous work, and collaborate with their peers. 

3. The R packages SITS (Simoes et al., 2017) and dtwSat (Maus et al., 2017), for big EO 

analytics on satellite image time series. 

4. A set of web services for big EO data, adapted to the needs of satellite image time 

series (Vinhas et al., 2016). 

Array databases split large volumes of data in distributed servers in a “shared nothing” 

way. A big array is broken into “chunks” that are distributed among different servers. Array 

DBMS such as SciDB (Stonebraker et al., 2013) reduce the impedance mismatch between the 

data model (raster), the storage model (arrays) and the analysis functions. Entire collections 

of image data fit into single spatiotemporal arrays. Using array DBMS with statistical 

computing is a natural solution for EO applications. SciDB has an R interface that allows 

researchers to parallelising complex analysis and run algorithms on large remote sensing data 

sets (Figure 2). This solution is a suitable compromise between the needs for massive paralel 

data processing and maximum flexibility in algorithm design. 
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Figure 2: Remote execution of R scripts in SciDB 

 

In terms of hardware, our architecture has 5 servers with 2 CPUs with 6-cores each, 

operating at 2.4GHz with a 15MB cache. Each server has 96 GB of RAM, and 16 TB of data 

storage. This gives 60 cores that can work in parallel in a “shared-nothing” data storage. The 

array database SciDB includes the full set of MODIS MOD09Q1 images at 250 meter resolution 

for South America, with 13,800 images associated to 317 billion data series. The case study 

described in the project covers the state of Mato Grosso, Brazil, an area of 900,000 km2, 

which has about 20 billion measures. The full processing of all time series to classify 16 years 

of data in Mato Grosso takes about 6 hours using the R-SciDB interface. Given these results, 

we argue that using SciDB combined with R is an adequate solution for big Earth Observation 

data analytics. 
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3.4. Post-processing Masks 

 

We applied three masks to the final classified maps. The sugarcane masks from 2003 

to 2016 come from the Canasat project (www.dsr.inpe.br/canasat/). This project maps 

sugarcane areas in the South-Central region of Brazil using LANDSAT images (Adami et al., 

2012). Sparovek et al. (2015) provided the urban area mask. The water mask comes from 

Pekel et al. (2016), who used three million LANDSAT satellite images to quantify changes in 

global surface water over the past 32 years (1984 to 2015). 
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4. Results and Discussion 

 

To estimate the classification accuracy, we ran a 5-fold cross-validation procedure 

(Wiens et al., 2008). In this validation, we run 5 different assessments. For each assessment, 

80% of the samples are used for training and 20% for prediction. The accuracy of all 5 

classifications is averaged to produce a single estimation. Using a 5-fold validation has some 

advantages to other validation methods. The goal of cross-validation is to find out how well a 

given statistical learning procedure can be expected to perform on independent data (James 

et al., 2013). Increasing the number of folds reduces the bias of the estimate of the model 

performance on independent data, at the cost of increasing its variance. Given the number of 

samples of each class (see Table 1), we consider that a 5-fold cross validation is adequate for 

our training set. 

The 5-fold cross validation estimates an overall accuracy of 94% and the Kappa index 

was 0.92. Producer’s and user’s accuracies of all classes were close to or better than 90% 

(Table 2). This confirms the applicability of the proposed method in classify agricultural areas. 

As expected, the matrix shows some confusion between the classes’ soybean-maize and 

soybean-millet. Since maize and millet have similar physical characteristics, they can be 

spectrally confused (Figure 5). Both are grasses, with lanceolate leaves; the height of maize 

can reach up to 3.5 meters, while millet varies between 1.5 and 3 meters, and can reach more 

than 5 meters. In general, results show a good discrimination between different crops, which 

improves on previous work (Kastens et al., 2017; Macedo et al., 2012; Arvor et al., 2012, 

2011). 

Measured deforestation in Mato Grosso from 2005 to 2016 was 4.1 million hectares, 

a decrease of 12% of the total forest area, considering both Amazonia and Cerrado biomes. 

The areas classified as forest were compared with the Hansen et al. (2013) mapping for the 

year 2000. These authors used LANDSAT images to map the percent of tree crown cover 

densities. Trees were defined as all vegetation taller than 5 meters height. In order to separate 

the forest areas, we took the areas with more than 25% tree cover from the Hansen map. We 

found out that 99% of the pixels classified as forest match the pixels indicated by Hansen et 

al. (2013) as having more than 25% tree cover. For the cerrado class, 62% of the pixels match 

the pixels indicated by Hansen et al. (2013) as having more than 25% tree cover. This 
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difference occurs because our cerrado class includes both wooded and wooded-herbaceous 

physiognomies. 

 

Table 2: Confusion matrix of MODIS time series images, obtained by 5-fold cross validation of 

classification of field data, and values of producer’s accuracy (PA) and user’s accuracy (UA) for 

each class. 

 1 2 3 4 5 6 7 8 9 UA 

1 Cerrado 393 0 0 12 0 0 0 0 0 0.97 

2 Fallow-Cotton 0 33 0 0 1 2 0 0 0 0.92 
3 Forest 1 0 136 0 0 0 0 0 0 0.99 

4 Pasture 6 0 1 357 3 1 0 5 0 0.96 
5 Soy-Maize 0 1 1 1 352 18 0 26 4 0.87 

6 Soy-Cotton 0 0 0 0 13 376 0 4 0 0.96 
7 Soy-Fallow 0 0 0 0 0 0 88 0 0 1 

8 Soy-Millet 0 0 0 0 25 2 0 199 2 0.87 
9 Soy-Sunflower 0 0 0 0 4 0 0 1 47 0.9 

PA 0.98 0.97 0.99 0.96 0.88 0.94 1 0.85 0.89  
 

The pixels labelled as pasture were compared to the pasture mapping done by Parente 

et al. (2017), who produced a pasture mask for Brazil in 2015 using LANDSAT-8 images and a 

random forest classifier. The difference between the total pasture area in our work and that 

mapped by Parente et al. (2017) for the state of Mato Grosso was 4%. Correlation between 

the individual pasture pixels in both works was 89%. Part of this difference can be explained 

by the fact that the map by Parente et al. (2017) uses additional masks to exclude indigenous 

areas and national parks. An additional factor is that Parente et al. (2017) use LANDSAT 

images, while we use MODIS. Note that user’s accuracy of the pasture class on the map made 

by Parente et al. (2017) is 83%, while user’s accuracy of the pasture class of SVM classification 

is 96%. Further detailed studies are required to assess the quality of these approaches and to 

improve pasture assessments in the Amazonia and Cerrado biomes.  

Figure 3 shows two of the resulting maps with the spatial distribution of land cover 

classes, for the years 2005 and 2016. The full data set, including all resulting maps and the 

ground sample data, as well as the software used to produce the maps, are openly available 

in the internet. 
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Figure 3: SVM classification for state of Mato Grosso in 2005 and 2016, with sugarcane, urban 

area and water masks. 

 

We compared our crop classification to IBGE official crop statistics (IBGE, 2017). IBGE 

hold yearly sample surveys of agricultural production at the municipal level, the so-called PAM 

(“Pesquisa Agrícola Municipal”). At state level, the soybean, cotton, maize and sunflower 

areas mapped by our work had a correlation of 98%, 96%, 73%, and 80%, respectively, to the 

state level results of the IBGE PAM (Figure 4). Compared to the IBGE PAM, the classification 

overestimated the soybean and the maize areas, and underestimated cotton and sunflower 

areas. These differences may have been caused by the spatial resolution of the MODIS images 

(250 meters), which generates spectral mixing due to different land uses within a single pixel 

(Friedl et al., 2002). However, the lack of a reliable reference data set precludes an objective 

assessment. The IBGE PAM results are based on samples and not on surveys. Thus, they 

contain uncertainties as well, and should not take as absolute references. To produce the 

PAM, IBGE staff do not go to the field.  

They contact large producers and also rely on subjective estimates of the local IBGE 

staff. Therefore, comparing our results with data from the PAM does not entail an accuracy 

estimate of our work. Correlation between the sum of agricultural areas classified in this study 

and the estimates by IBGE for the harvests from 2005 to 2016, are equal to 98%. Thus, we 
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consider that the proposed methodology is effective for mapping agricultural crops in Mato 

Grosso. 

In Mato Grosso, the cropland area increased by 1.83 million hectares (26.5%) from 

2005 to 2016. The greatest expansion occurred between 2007- 2008 and 2012-2013, with a 

growth rate of 11.9% and 11.6%, respectively. The expansion of agricultural areas occurred 

mainly around the BR163 highway, which has its starting point in the center of the state and 

goes as far north as Mato Grosso, as if dividing the state in half. At the edge of this road it is 

possible to observe the expansion of agriculture in the northern direction on the Amazonia 

biome. Municipalities such as Querencia and Tabaporã, where there was almost no presence 

of agriculture in the early 2000s, today are expressive producers of soybeans. Arvor et al. 

(2012) also observed the same expansion trend around the BR163 highway. This area has the 

highest soybean yields in Mato Grosso due to its soil, topography and climate (Spera et al., 

2014). It is area is also the one with largest proportion of double cropping due to a longer 

rainy season (Arvor et al., 2013) Furthermore, the Brazilian government the plans to asphalt 

the BR163 highway until it connects with the Mirituba and Santarem harbors in the state of 

Para on the Amazon river. This would decrease the transportation costs for soybean exports 

 

 

Figure 4: Total area of soybean, cotton, maize and sunflower in state of Mato Grosso 

estimated by SVM classification and the IBGE cropland survey. 



 

18 
 

 

The soybean class had also decreased in area from 2005 to 2006 and from 2006 to 

2007 due to the economic crisis, when the Brazilian currency was devalued compared with 

the US dollar. The unfavorable exchange rate affected soybean production from 2005 to 2007 

(Arvor et al., 2012). However, soybeans had a significant increase of 0.93 million hectares 

(12.9%) between 2012 and 2013. According to the Brazilian National Supply Company 

(CONAB, July 2013), this growth is due to better prices for soybean in the international 

market, and its repercussions in the domestic market. New commercial arrangements, such 

as advance commercialization, also contributed to this increase. 

Due to the increased demand for food and biofuels, producers in the state of Mato 

Grosso intensified agricultural production by adopting double cropping systems. Area 

cultivated with double cropping systems, involving soybeans (first cycle) + some other crop 

(second cycle) or some other crop (first cycle) + cotton (second cycle), increased from 6.58 to 

8.43 million hectares during 2005 to 2016, an increase of 28%. Double-cropping systems are 

currently predominant in Mato Grosso. Maize area also grew due by replacing millet as the 

crop of choice for planting in consortium with soybeans. Millet lost an area of 1.87 million 

hectares (61%) to maize. Due to improvements in maize varieties, and the increase in Brazil’s 

maize exports, maize replaced millet as a more profitable option. In the municipality of Campo 

Verde (located in the cerrado biome, in the southeast of the state of Mato Grosso), it is 

possible to observe this transition from single to double crop systems, with the replacement 

of fallow cotton by soybean cotton, from 2005 to 2015 (Figure 5). 

The double cropping system is more profitable for the producer, and represents a 

better use of agricultural areas, allowing the increase of production at the same time that 

reduces the pressure of expansion over native vegetation. Double cropping also enables to 

adopt no tillage practice (apart for cotton) which is better from an ecological point of view. 

Previous authors (Kastens et al., 2017; Spera et al., 2014; Arvor et al., 2012) had already 

pointed out the increase in double cropping production associated with soybeans. 
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Figure 5: Change in the production system in the municipality of Campo Verde - MT from 

single crop in 2005 to double crop in 2016. In the gray highlight it is possible to observe the 

change from the fallow cotton class in 2005 to the soybean cotton class in 2016. 

 

Pasture area in Mato Grosso between 2005 and 2015 declined 4.6 million hectares, 

from 28.1 to 23.5 million hectares. Our results for 2016 point to a total to 28.9 million 

hectares. We consider this result to be an outlier that needs to be checked by producing the 

2017 estimates in due time. According to IBGE, the number of cattle heads in the state has 

increased from 26.7 in 2005 to 29.3 million in 2015, a growth of 10% (IBGE, 2017). In Figure 

6, we show that the stocking rate in Mato Grosso has grown steadily. The cattle heads grew 

by 10%, while pasture decreased by 16% between 2005 and 2015. In general, there is a trend 

towards pasture intensification coupled with abandonment of frontier areas, especially those 

at the most Northern part of the state. 
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Figure 6: Pasture area, provide by SVM classification, and stoking rate, calculate by IBGE cattle 

head value and pasture areas, in Mato Grosso state, from 2005 to 2016. 

 

The results point out to important trends in agricultural intensificationin Mato Grosso. 

Double cropping systems are now the most common production system in the state, thus 

increasing the potential for land sparing. As pointed out by other authors (Spera et al., 2014; 

Gibbs et al., 2015; Kastens et al., 2017) the impact of crop production in deforestation has 

decreased since 2005. Arguably, this is due to a combination of factors, including the Soy 

Moratorium, increased law enforcement, and the occupation of the best farming areas in the 

state’s Amazonia biome (Spera et al., 2014). A less studied issue is the increase in pasture 

productivity. Pasture expansion and intensification has been less studied than crop 

expansion, although it has a stronger impact on deforestation and GHG emissions. Our data 

points to a significant increase in stocking rate in Mato Grosso, and to the possible 

abandonment of pasture areas opened in the state’s frontier. Further studies, that couple 

fieldwork, mapping and economic models, are required for better understanding of the 

underlying driving forces for the cattle-growing sector. 

Our results point out the conflicting forces at play in the agricultural expansion in Mato 

Grosso. In some segments (such as crop production), there is a consolidation in place. The 

best producing areas have been occupied, and emphasis now is on increasing productivity by 

adoption of double-cropping systems. In the case of cattle-raising, one can see mixed signs.  

On one hand, there is a modest, but significant, increase in stocking rate. However, 

there is still expansion going on in the Northern frontiers of the state, which need to be better 
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studied. Many factors could be at play, including land speculation, and indirect land use due 

to crop expansion. This situation poses important challenges. The large scale mapping that 

we produced for Mato Grosso needs to be expanded to the whole Amazonia and Cerrado 

biomes, and also needs to be supported by economic analysis. There is a need for continuous 

improvement of land cover classification using remote sensing time series, by using LANDSAT-

class satellites to increase spatial resolution and classification accuracy. 
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5. Publications Submitted and Participation in scientific events 

 

Papers submitted to international journals 

I. Michelle Picoli, Gilberto Camara, Ieda Sanches, Rolf Simões, Alexandre 

Carvalho, Adeline Maciel, Alexandre Coutinho, Julio Esquerdo, João Antunes, 

Rodrigo Begotti, Damien Arvor, Claudio Almeida. Big Earth Observation Time 

Series Analysis for Monitoring Brazilian Agriculture. Submitted to ISPRS Journal 

of Photogrammetry and Remote Sensing (under review). 

II. Adeline Maciel, Gilberto Câmara, Lúbia Vinhas, Michelle Picoli, Rodrigo 

Begotti, Luiz Assis. Spatiotemporal interval logic for reasoning about land use 

change dynamics. Submitted to Inter. Journal of Geographical Information 

Science (2nd revision). 

 

Data sets submitted to public repositories 

I. Gilberto Camara, Michelle Picoli, Rolf Simoes, Adeline Maciel, Alexandre 

Carvalho, Alexandre Coutinho, Julio Esquerdo, João Antunes, Rodrigo Begotti, 

Damien Arvor (2017): Land cover change maps for Mato Grosso State in Brazil: 

2001-2016, links to files. PANGAEA, 

https://doi.org/10.1594/PANGAEA.881291 

 

Papers submitted to scientific conferences 

I. Adeline Maciel, Lubia Vinhas, Gilberto Camara, Michelle Picoli, Rodrigo 

Begotti. An interval-based approach for reasoning about land use change 

trajectories. Submitted to International Geoscience and Remote Sensing 

Symposium, IGARSS 2018. 

 

Participation in scientific events 

I. 18o. Simpósio Brasileiro de Sensoriamento Remoto, SBSR 2017. Santos - SP, 

28-31 May 2017. 
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II. 5th Sampling and Research Methodology School and 4th International 

Workshop on Surveys for Evaluation of Public Policies, V ESAMP e IV WIPAPP. 

Cuiabá-MT, 17-20 October 2017. 
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Para o período de referência do presente relatório, as atividades de pesquisa do bolsista 

de pós-doutorado Rodrigo Anzolin Begotti (processo FAPESP n° 16/16968-2) 

contemplam a validação e aprimoramento de métodos de alerta de desmatamento em 

“big data” para o programa DETER do INPE e a elaboração de um artigo científico. 

Para tal, o bolsista realizou a tarefa de qualificar parte do acervo de fotos do INPE 

(Fototeca e Projeto Geoma) com o objetivo de gerar amostras espectrais 

georeferenciadas para toda a Amazônia brasileira. As atividades relacionadas à 

qualificação do acervo de fotos foram descritas no relatório científico anterior. 

 Para analisar a detectabilidade e verificar a existência de padrões temporais 

relacionados ao processo de conversão da floresta em corte raso e floresta degradada, 

foram utilizadas séries temporais de imagens do sensor MODIS, coleção MOD13Q1 de 

acesso livre, disponível a partir do ano 2000. Três bandas dessa coleção em particular 

foram utilizadas: i) EVI (Enhanced Vegetation Index); ii) NDVI (Normalized Difference 

Vegetation Index); e iii) NIR (Infra-Vermelho Próximo). Das 7013 fotografias 

qualificadas que compõem o nosso conjunto de amostras, foram utilizadas 2509 

amostras agrupadas em sete classes de cobertura distintas (Tabela 1). As amostras foram 

analisadas em ambiente R (http://www.r-project.org) utilizando o pacote SITS (Satellite 

Image Time Series; disponível em https://github.com/e-sensing/sits). 

 

Tabela 1: Amostras espectrais utilizadas na análise da série temporal MODIS. 

Classe Número de amostras 

Floresta primária 1337 

Corte raso 41 

Cicatriz de fogo florestal 43 

Corte seletivo 130 

Degradação florestal leve 165 

Degradação florestal moderada 433 

Degradação florestal alta 360 

 

O intervalo das séries temporais foi estabelecido seguindo o calendário agrícola, 

iniciando-se no primeiro dia do mês de setembro e terminando no último dia do mês de 



agosto do ano seguinte. De um modo geral, início do calendário agrícola coincide com o 

final da estação seca e início da estação chuvosa. Para a detecção de padrões temporais, 

foi utilizado o modelo SVM (Support Vector Machine), implementado no pacote SITS. 

O desempenho do classificador foi avaliado utilizando-se validação cruzada com cinco 

repetições. A cada repetição, o algoritmo separa aleatoriamente 20% das amostras para 

validação e com a parte restante dos dados, realiza os procedimentos computacionais 

para o aprendizado de máquina (machine learning). Após cinco repetições, a acurácia 

geral da classificação foi igual a 63%. A Tabela 2 apresenta a matriz de confusão para 

as classes utilizadas. Há considerável confusão entre as classes de degradação florestal e 

de floresta primária uma vez que proporcionalmente o número de amostras das classes 

de degradação florestal é menor do que a quantidade de amostras de floresta primária. 

Há também grande confusão entre as classes de degradação florestal e de corte seletivo. 

Além disso, a presença de nuvens pode ter alterado os padrões temporais.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tabela 2: Matriz de confusão da classificação das amostras do acervo de fotos por meio do modelo Support Vector Machine. 

 
Corte 

raso 

Cicatriz de fogo 

florestal 

Degradação 

florestal alta 

Degradação 

florestal leve 

Degradação florestal 

moderada 

Floresta 

primária 

Corte 

seletivo 

Corte raso 26 0 4 0 1 0 0 

Cicatriz de fogo 

florestal 
0 14 6 0 2 2 1 

Degradação florestal 

alta 
7 12 144 18 71 34 9 

Degradação florestal 

leve 
0 0 13 21 25 24 6 

Degradação florestal 

moderada 
3 4 91 46 165 64 30 

Floresta primária 5 13 98 65 147 1184 52 

Corte seletivo 0 0 4 15 22 16 32 

 

 

 

 



Com base nesse primeiro resultado, as classes Degradação florestal alta e 

Degradação florestal moderada foram fundidas em uma única classe chamada 

Degradação florestal. Da mesma forma, a classe Degradação florestal leve foi 

incorporada à classe Corte seletivo. Com o novo arranjo das amostras em cinco classes 

o modelo SVM foi utilizado para uma nova classificação. A acurácia geral obtida foi de 

71%. A matriz de confusão das cinco classes é descrita na Tabela 3. A confusão entre as 

classes Degradação florestal e Floresta primária diminuiu, ao contrário da classe Corte 

seletivo. A classe Cicatriz de fogo florestal em ambos os resultados apresenta grande 

confusão. Isso se deve à grande variação na severidade dos danos provocados pelo fogo 

na vegetação. Há também grande variação na ocorrência e duração dos incêndios 

florestais ao longo do tempo, mesmo que eles ocorram predominantemente no período 

seco do ano. Os próximos passos serão testar a classificação utilizando novos conjuntos 

de amostras em regiões específicas.  

 

Tabela 3: Matriz de confusão da classificação das amostras agrupadas do acervo 

de fotos por meio do modelo Support Vector Machine. 

 Corte raso 
Degradação 

florestal 

Cicatriz de 

fogo 

florestal 

Floresta 

primária 

Corte 

seletivo 

Corte raso 25 4 0 1 0 

Degradação 

florestal 
10 470 14 103 94 

Cicatriz de 

fogo 

florestal 

0 8 16 1 0 

Floresta 

primária 
6 246 13 1190 119 

Corte 

seletivo 
0 65 0 29 82 

 

Entre os dias 17 e 29 de setembro de 2017 o bolsista realizou trabalho de campo 

nos estados de Mato Grosso e Pará, na região da Rodovia BR-163 entre os municípios 



de Sinop-MT e Novo Progresso-PA. O objetivo foi incorporar novas amostras àquelas 

já existentes e obter um novo conjunto de amostras de degradação florestal, 

particularmente de corte seletivo. Aproximadamente 2858 km foram percorridos de 

automóvel (Figura 1). Foram visitados 13 pontos de degradação florestal obtidos a partir 

dos dados do Programa Mapeamento da Degradação Florestal na Amazônia Brasileira 

(DEGRAD) ocorridos no ano de 2017. Foram visitados também 59 pontos de 

desmatamento ocorrido no ano 2016/2017 a partir de dados do Programa de 

Monitoramento da Floresta Amazônica Brasileira por Satélite (PRODES). Foram 

realizadas visitas a áreas de floresta pertencentes a três propriedades rurais que 

possuíam licença concedida para a execução de Plano de Manejo Florestal. A Figura 2 

mostra a localização dos pontos de degradação e desmatamento visitados. 

Ocasionalmente, foram coletadas informações a respeito da localização e da cultura 

plantada em áreas agrícolas. 

 

 

Figura 1: Trajetos rodoviários percorridos durante o trabalho de campo. 

 



 

Figura 2: pontos visitados de degradação florestal (verde) e desmatamento 

(amarelo). 

 

Nas áreas sob licença de Plano de Manejo Florestal, foram registradas a 

localização de cada UPA (Unidade de Produção Anual) e o ano em que ocorreu ou que 

estava planejado ocorrer a retirada de árvores de valor madeireiro. Esses dados serão 

utilizados para analisar de forma mais robusta o comportamento espectral da floresta 

submetida à degradação florestal por corte seletivo, uma vez que com esses dados 

validados em campo, sabe-se quando a atividade madeireira ocorreu ou irá ocorrer. 

Nesse último caso, a visita em campo foi importante para avaliar a estrutura da floresta 

antes da retirada das árvores. A Figura 3 mostra a distribuição das amostras de corte 

seletivo em uma das áreas visitadas de acordo com o ano no qual a degradação pela 

atividade ocorreu. 

 



 

Figura 3: Degradação florestal por corte seletivo em Planos de Manejo 

Florestal. 

 

O bolsista participou da elaboração como co-autor de três manuscritos e um 

resumo expandido submetido para congresso científico internacional. No manuscrito 

entitulado “An interval-based approach for reasoning about land use change 

trajectories”, cujos autores são Adeline M. Maciel, Lubia Vinhas, Gilberto Camara, 

Luiz F. Assis, Michele C. A. Picoli e Rodrigo A. Begotti foi submetido para o periódico 

International Journal of Geographical Information Science. No momento estão sendo 

feitas as correções sugeridas pelos revisores. A contribuição do bolsista para esse 

manuscrito se deu na obtenção e processamento dos dados, na escrita e revisão do texto. 

O manuscrito entitulado “Big Earth observation time series analysis for monitoring 

Brazilian agriculture” foi submetido para o periodico ISPRS Journal of 

Photogrammetry and Remote Sensing e se encontra em revisão. O bolsista participou da 

obtenção e seleção das amostras espectrais e do processamento das imagens resultantes, 

além de auxiliar na elaboração e revisão do texto e das figuras que compõem o 

manuscrito. No momento o bolsista está participando da preparação do manuscrito 

entitulado “Spatio-temporal patterns of forest cover in Brazilian Amazonia: Different 

landscapes generated by different land use (or human occupation) contexts”. Os autores 

são Adriana Afonso, Rodrigo A. Begotti e Maria I. S. Escada. O bolsista está 

contribuindo com a elaboração e revisão do texto e das figuras que compõem o 



manuscrito. O objetivo é submetê-lo para o periódico PNAS Proceedings of National 

Academy of Sciences of the United States of America. 

Para o evento International Geoscience and Remote Sensing Symposium que 

será realizado em julho de 2018 na cidade de Valencia, Espanha, o bolsista participou 

da elaboração do resumo expandido submetido ao comitê científico sob o título “An 

interval-based approach for reasoning about land use change trajectories”. O bolsista  

contribuiu com a obtenção e processamento dos dados, na escrita e revisão do texto. Os 

autores desse trabalho são Adeline M. Maciel, Lubia Vinhas, Gilberto Camara, Michele 

C. A. Picoli e Rodrigo A. Begotti. 
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1 Introdução 

Este é o segundo relatório referente à bolsa de Doutorado fluxo contínuo - 

processo número 2016/08719-2 - outorgada à Rennan de Freitas Bezerra Marujo, 

aluno regular do Programa de Pós-Graduação em Computação Aplicada do Instituto 

Nacional de Pesquisas Espaciais. A bolsa financia a pesquisa “Métodos de análise de 

dados espaço-temporais” desenvolvida no projeto e-sensing - processo 2014/08398-6 - 

sob a orientação da Profa. Dra. Leila Maria Garcia Fonseca. 

A Terra está em constante mudança, sendo a caracterização e mapeamento da 

cobertura terrestre essenciais para planejar e gerenciar seus recursos naturais. 

Entender os processos ativos, como o desmatamento, a expansão urbana e os 

fenômenos naturais, é vital para a preservação dos ecossistemas. Portanto, é 

importante desenvolver ferramentas capazes de detectar tais variações (KUENZER et 

al., 2015). 

O processo de detecção de mudanças é uma tarefa difícil de realizar, sendo 

comumente utilizado nesta operação sensores orbitais multi-espectrais (COPPIN et al., 

2004). Sensores orbitais de alta resolução espacial captam informações da superfície 

terrestre com mais detalhes do que os sensores de baixa resolução espacial. 

Entretanto, há um compromisso entre as características de resoluções temporal, 

espacial e radiométrica que podem limitar o desempenho do sensor em algumas 

aplicações (LEFSKY, COHEN, 2003). Sensores de média resolução espacial (10 a 50 

metros) podem preencher a lacuna entre o detalhamento provido por imagens de alta 

resolução espacial e a frequência de aquisição de imagens obtidas por sensores de 

baixa resolução espacial (EHLERS et al., 2002). 

O INPE foi pioneiro na distribuição livre de imagens orbitais de média resolução 

espacial de imagens com o segundo Satélite Sino-Brasileiro de Recursos Terrestres 

(CBERS-2) gratuitamente na internet (BANSKOTA et al., 2014). Esta politica de dados 

livres encorajou o Serviço Geológico dos Estados Unidos (United States Geological 

Survey - USGS) a disponibilizar os dados Landsat em 2008 (WOODCOCK et al., 2008, 

BANSKOTA et al., 2014), o que resultou numa maior quantidade de acessos e 

aplicação destas imagens (WULDER et al., 2012). 



 
 

Os métodos para a detecção de mudança normalmente utilizam séries 

temporais curtas, variando de duas a cinco imagens, não utilizando o potencial 

completo das séries históricas (COPPIN et al., 2004). Neste contexto, as séries 

temporais podem fornecer observações de padrões, não encontradas em observações 

de data única, como tendências, periodicidades e modelos de previsão (EHLERS, 

2009). 

Séries temporais de imagens orbitais são um conjunto contínuo e consistente de 

informações sobre a Terra (EHLERS, 2009), integrando a informação espectral e 

espacial com a componente temporal, proporcionando informação rica para detalhar as 

variações espaciais ao longo do tempo (PETITJEAN et al., 2012). No entanto, a 

ausência de imagens de boa qualidade devido à presença de nuvens, baixa resolução 

temporal, bem como defeitos do sensor (por exemplo, as lacunas em imagens 

Landsat-7) exigem a sua correção e, em muitas aplicações, há a necessidade do uso 

de mais de um sensor (LEFSKY; COHEN, 2003; SHEN et al., 2016). 

Atualmente, devido a maior quantidade de dados de sensoriamento remoto 

disponível (WULDER et al., 2012), as abordagens que utilizam imagens de múltiplas 

fontes tornaram-se promissoras. Isso ocorre devido à melhora dos mapeamento e do 

monitoramento das variáveis da vegetação ao longo do tempo quando utiliza-se 

aquisições mais frequentes (MOUSIVAND et al., 2015). 

Por outro lado, são necessárias técnicas de processamento de imagens para 

unificar esses dados de forma que eles possam ser integrados em uma mesma base 

de dados prontos para análise (EHLERS, 2009), pois estes dados possuem diferentes 

resoluções espaciais, espectrais, temporais e angulares (MOUSIVAND et al., 2015). 

Neste contexto, este relatório descreve as atividades acadêmicas e de pesquisa 

realizadas pelo bolsista desde janeiro de 2017 até dezembro de 2017, segundo ano do 

projeto de pesquisa, que envolvem participação em eventos, requisitos do programa 

de pós-graduação, pesquisa e redação de artigos científicos. Neste relatório também 

são apresentados o resumo do projeto de pesquisa, resultados e plano de trabalho 

para as próximas etapas da pesquisa. 

  



 
 

2 Resumo do projeto de pesquisa 

2.1. Resumo 

O Objetivo da pesquisa é desenvolver algoritmos de análise espaço-temporal 

para extrair informações de grandes bancos de imagens de observação da Terra. Este 

trabalho foca no desenvolvimento de métodos de análise espaço-temporal para 

detecção de mudanças de uso e cobertura da terra em grandes conjuntos de dados. 

Para isto serão desenvolvidos (1) técnicas de unificação dos dados obtidos de 

sensores diferentes que envolvem várias etapas: calibração radiométrica e geométrica, 

tratamento da cobertura de nuvem, compatibilização das bandas espectrais dos 

sensores, etc; (2) geração das séries temporais; (3) análise das séries temporais para 

detecção de mudanças do uso e cobertura da Terra. Durante este período, foram 

desenvolvidas técnicas de unificação dos dados dos satélites Landsat-8, Landsat-7 e 

CBERS-4. Além disso, foram também estudadas técnicas de reconstrução de dados 

de observação da Terra. 

2.2. Objetivo 

Desenvolver algoritmos de análise espaço-temporal para extrair informações de 

grandes bancos de imagens de observação da Terra. 

2.3. Metas da tese de doutorado: 

 Conceber, implementar e validar métodos de detecção de mudanças de uso e 

cobertura da terra para grandes bancos de dados com séries temporais 

extraídas de imagens de sensoriamento remoto multisensores; 

 Publicar dois artigos em congresso internacional e dois artigos em revista 

científicas. 

2.4. Cronograma proposto no relatório 01 (Dezembro 2016) 

 



 
 

2.5. Situação atual dos objetivos 

Os objetivos traçados para o segundo ano de pesquisa foram alcançados, de 

modo que o desenvolvimento dos métodos constam na proposta de tese do bolsista 

(Anexo 2). Dentre as abordagens utilizadas estão: a compatibilização dos dados dos 

diferentes sensores, Landsat-8/OLI, Landsat-7/ETM+ e CBERS-4/MUX, por meio de 

regressão linear; o preenchimento de dados nulos e redução de nuvens com uma 

adaptação do método de Maxwell et al. (2007) e o preenchimento de dados nulos com 

uma adaptação da metodologia de casamento de templates de séries temporais 

proposta por Vuolo et al. (2017). A adaptação do método de Maxwell et al. (2007) 

encontra-se com uma implementação prévia e começará a ser testada. A adaptação 

da metodologia de Vuolo et al. (2017) será implementado no decorrer do próximo ano. 

No que tange a publicação de artigos científicos, o bolsista teve como aceito 

para publicação o artigo “Raster Data Processing with TerraLib for Lua: an application 

to fill Landsat-7 SLC-off gaps” na revista Journal of Computational Interdisciplinary 

Sciences (JCIS). O bolsista apresentou o trabalho “CBERS-4/MUX automatic detection 

of clouds and cloud shadows using decision trees” no XVIII Simpósio Brasileiro de 

Sensoriamento Remoto. O bolsista, submeteu e apresentou um resumo intitulado 

“Spectral compatibilization between Landsat-8/OLI, Landsat-7/ETM+ and CBERS-

4/MUX bands through linear regression and linear mixture model” no 17º Workshop de 

Computação Aplicada do INPE (WORCAP 2017). A continuação deste trabalho foi 

submetida na categoria full paper ao Brazilian Symposium on Geoinformatics (Geoinfo 

2017), sendo aceita para publicação nos anais do evento. 

  



 
 

3 Resumo das atividades desenvolvidas 

Como parte das obrigações do curso de pós graduação o bolsista realizou o estágio 
docência na Universidade Federal de São Paulo (Unifesp), auxiliando na disciplina de 
Lógica de Programação. O bolsista frequentou os seminários promovidos pela pós-
graduação em computação aplicada, atingindo os 40 créditos exigidos pelo programa. 
O bolsista apresentou e foi aprovado no exame de qualificação em maio de 2017 
(Anexo 1), no qual apresentou temas relacionados a séries temporais e abordagem 
multisensor. O bolsista também apresentou e foi aprovado no exame de proposta de 
tese, ocorrido em 12 de Dezembro de 2017 (Anexo 2), no qual propôs a unificação dos 
dados dos sensores Landsat-8/OLI, Landsat-7/ETM+ e CBERS-4/MUX por meio de 
regressão linear e adaptações de métodos para preencher dados nulos das 
observações e, assim, gerar um cubo de dados para análise espaço-temporal. 

O bolsista testou abordagem por modelo linear de mistura e por regressão linear para 
unificação dos dados, tendo esta ultima apresentado melhores resultados. Devido à 
presença de nuvens e falhas no sensor Landsat-7/ETM+, alguns métodos de 
reconstrução de dados de observação da Terra foram pesquisados para preencher 
estas lacunas. Na proposta de tese o bolsista sugeriu modificações em dois métodos 
de reconstrução para gerar um cubo de imagens de sensores óticos. O primeiro 
método, alteração da abordagem de Maxwell et al. (2007), foi implementado e está 
sendo testado. 

O bolsista também apresentou o trabalho “CBERS-4/MUX automatic detection of 
clouds and cloud shadows using decision trees” no XVIII Simpósio Brasileiro de 
Sensoriamento Remoto. Apresentou também o pôster “Spectral compatibilization 
between Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX bands through linear 
regression and linear mixture model” no 17º Workshop de Computação Aplicada do 
INPE (WORCAP 2017) e deu continuidade a este trabalho com um full paper no 
Brazilian Symposium on Geoinformatics (GEOINFO 2017). 

3.1. Pesquisa 

O bolsista fez um levantamento sobre métodos de normalização de imagens 

provenientes de diferentes sensores sendo as mais adequadas: regressão linear e 

modelo linear de mistura espectral. Com base nisso o bolsista realizou testes de 

compatibilização envolvendo os sensores Landsat-8/OLI, Landsat-7/ETM+ e CBERS-

4/MUX por meio das duas abordagens. Os resultados indicaram que a abordagem 

utilizando regressão linear é melhor para compatibilização destes dados. Devido à 

presença de nuvens no momento da aquisição das imagens, bem como falhas no 

sensor Landsat-7/ETM+, algumas regiões das imagens apresentam valores nulos. 

Com base nisso, o bolsista pesquisou métodos de reconstrução de dados de 

observação da Terra. Deste modo, na proposta de tese foram sugestionadas 

alterações em dois métodos para suprimir estas lacunas. Ambas as adaptações 



 
 

encontram-se descritas no documento de proposta (Anexo 2). A primeira alteração 

consiste em uma adaptação do método de Maxwell et al. (2007) para preenchimento 

das falhas do Landsat-7/ETM+. Basicamente o método original utiliza regiões obtidas 

por segmentação de imagens de data próxima, para estimar valores faltantes 

utilizando a média dos segmentos. Na alteração proposta, será utilizada a variância 

dos segmentos, possibilitando assim um preenchimento mais próximo da realidade. A 

segunda alteração consiste em adaptar o método de Vuolo et al. (2017) para geração 

de séries temporais sem lacunas. No método original os autores fazem uso de 

distância euclidiana para casar templates e estimar os valores faltantes de acordo com 

o template mais semelhante. Na alteração proposta, será utilizada a distância DTW, 

que é mais apta a notar diferenças em séries temporais (PETITJEAN et al., 2012). 

3.2. Submissão e apresentação de artigos: 

Baseado nos estudos realizados no ano anterior, o bolsista apresentou o 

trabalho citado no último relatório intitulado “CBERS-4/MUX automatic detection of 

clouds and cloud shadows using decision trees” no simpósio brasileiro de 

sensoriamento. O artigo “Raster Data Processing with TerraLib for Lua: an application 

to fill Landsat-7 SLC-off gaps” foi aceito para publicação revisão na revista “Journal of 

Computational Interdisciplinary Science (JCIS)”. 

O bolsista apresentou o trabalho “Spectral compatibilization between Landsat-

8/OLI, Landsat-7/ETM+ and CBERS-4/MUX bands through linear regression and linear 

mixture model” no 17º Workshop de Computação Aplicada do INPE (WORCAP 2017) 

com. A continuação deste trabalho foi submetida e aceita na categoria full paper no 

evento Brazilian Symposium on Geoinformatics (Geoinfo 2017). 

  



 
 

4 Atividades desenvolvidas 

4.1. Pesquisa 

Inicialmente, o bolsista fez um levantamento de sensores de média resolução 

espacial disponibilizados sem custo para o usuário. Dentre esses sensores optou-se 

por trabalhar com os dados do Landsat-7/ETM+, Landsat-8/OLI e CBERS-4/MUX. 

Os dados do programa Landsat foram selecionados devido ao seu intenso uso 

no monitoramento do uso e cobertura da terra e por ter a maior série histórica de 

dados orbitais (WULDER et al., 2012. As bandas espectrais dos sensores e resolução 

espacial do satélite CBERS-4 são similares as do Landsat. No futuro, pode-se incluir 

os dados do Sentinel, que também estão sendo disponibilizados sem custo. 

4.1.1. Compatibilização de dados de sensores diferentes 

Duas abordagens de normalização espectral foram testadas: abordagem por 

modelo linear de mistura e por regressão linear. 

A abordagem por regressão linear assume que a relação das bandas de 

diferentes sensores depende da iluminação e da geometria de observação. Baseia-se 

no principio de que imagens de sensores semelhantes, calibradas e atmosfericamente 

corrigidas são consistentes e comparáveis, apresentando pequena diferença. Assim, 

uma referência de valores de reflectância é utilizada em uma regressão com os valores 

de reflectância de um alvo, resultando em uma equação de ganho e offset para cada 

banda espectral. Adotando os dados do Landsat-8/OLI como referência, foram 

normalizados dados dos sensores Landsat-7/ETM+ e do sensor CBERS-4/MUX. 

A normalização por modelo linear de mistura espectral consiste em obter 

respostas espectrais referência, também chamada de endmember, para diversas 

classes, por exemplo: vegetação, solo e água. Adotando os dados do Landsat-8/OLI 

como referência, coleta-se endmembers para as classes vegetação, solo e 

água/sombra. Seguindo o mesmo principio, esses endmembers são coletados em 

imagens dos sensores Landsat-7/ETM+ e do sensor CBERS-4/MUX, obtendo assim 

para cada classe de cada sensor uma imagem proporção. As imagens de proporção 

são, então, utilizadas no processo inverso utilizando os endmembers referência, 

gerando assim imagens sintéticas do sensor Landsat-8/OLI. 



 
 

A comparação desses dois métodos foi utilizada para preparação do artigo 

“Spectral normalization between Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX 

bands through linear regression and spectral unmixing” (Anexo 4). A normalização por 

regressão linear apresentou resultados melhores do que a do modelo linear de mistura 

espectral, de modo que este método será utilizado para integrar as imagens destes 

sensores. As bandas com maior comprimento de onda apresentaram maior correlação 

do que as de comprimento de onda mais curto. Esse resultado pode ser justificado 

pelo fato das bandas de menor comprimento de onda sofrerem mais alteração devido 

aos efeitos atmosféricos (JENSEN, 2007). 

4.1.2. Preenchimento de lacunas em cubo de dados de sensoriamento remoto 

Devido à presença de nuvens e defeitos dos sensores, outro tópico de pesquisa 

estudado foi a reconstrução dos dados. O primeiro método é baseado na abordagem 

de Maxwell et al. (2007), que estima os valores faltantes pela média das regiões da 

imagem segmentada, como pode ser observado na Figura 1. Na adaptação do método 

proposta na tese, os valores são estimados pela variância dos pixels das regiões para 

preencher as lacunas, realizando um preenchimento mais próximo da realidade. Este 

método está sendo testado. 

 

Figura 1: Abordagem de Maxwell et al., (2007) para preenchimentos de lacunas em imagens 
do satélite Landsat-7 (a) utilizando imagens de data próxima obtidas por outro sensor (b), 
segmentando-a (c), de modo a usar o valor médio deste segmento (d) para preencher as 
lacunas (e). 

 



 
 

O segundo método estudado, de Vuolo et al. (2017), utiliza séries temporais 

como templates para preencher as lacunas de séries semelhantes, por meio de 

distância euclidiana. Na adaptação do método proposta, será usada uma série gerada 

a partir de diversos sensores, possibilitando mais observações. Além disso, será 

utilizada a distância DTW, que é mais adequada para detectar diferenças em séries 

temporais (PETITJEAN et al., 2012). 

4.1.3. Casos de estudo 

Dois casos de estudo serão usados nas regiões no sul do estado de Goiás, no 

bioma cerrado. Para este estudo, imagens de Agosto de 2015 à Outubro de 2017 

foram selecionadas. Essas datas foram selecionados devido ao inicio da operação do 

satélite CBERS-4 e porque as plantações na região, normalmente, se iniciam entre 

Setembro e Outubro. 

As áreas de estudo consistem em duas grades do sistema Military Grid 

Reference System (MGRS), identificadas por 22KDF e 22KEF. Essas áreas 

intersectam com a área útil do Path/Row Landsat 223/072, 222/072 e 222/073 (WRS 2 

- Worldwide Reference System 2) e com 6 Path/Rows CBERS-4/MUX: 162/119, 

162/120, 161/119, 161/120, 160/119 e 160/120 (CBERS WRS Path Row), como pode 

ser observado na Figura 2. Todas as imagens, dos sensores em estudo, que 

apresentem cobertura de nuvens inferior a 50%, no período de agosto de 2015 e 

outubro de 2017 serão adquiridas, processadas para reflectância de superfície, 

registradas, normalizadas e terão suas lacunas preenchidas. A seleção das grades 

selecionadas representam duas condições extremas, a primeira na qual as imagens do 

sensor referência estão totalmente contidas na área de estudo e a segunda onde a 

área de estudo esta localizada nas bordas do sensor referência. 

Para inspeções futuras do cubo de imagens gerado, haverá uma banda 

contendo informação sobre o histórico do pixel. Essa banda conterá informação 

referente ao sensor de origem e sobre todos os processamento realizados naquele 

ponto, incluindo sensores utilizados para preencher lacuna e datas utilizadas. Para 

validar o cubo de imagens, serão realizadas duas classificações de cobertura da Terra, 

a primeira baseada no método proposto por Vuolo et al. (2017) e a segunda utilizando 

a metodologia proposta. Inicialmente, a classificação será realizada com um único 



 
 

sensor e posteriormente usará os 3 sensores para verificar a melhoria da acurácia no 

mapeamento. Como referência serão utilizados dados do TerraClass Cerrado (INPE et 

al., 2012) e os resultados obtidos serão avaliados por meio de matriz de confusão. 

 

4.2. Submissão de trabalhos 

4.2.1. Artigo aceito para publicação pela revista Journal of Computational 

Interdisciplinary Sciences (JCIS) 

Em setembro de 2016 como resultado da disciplina de Banco de dados 

Geográficos desenvolveu-se, em colaboração com os professores da disciplina Dr. 

Gilberto Ribeiro de Queiroz, Dra. Lúbia Vinhas e Dra. Karine Reis Ferreira o trabalho 

“Raster Data Processing with TerraLib for Lua: an application to fill Landsat-7 SLC-off 

gaps”. 

Conforme anexo 3, o objetivo desse artigo é utilizar conceitos de banco de 

dados de imagens para realizar um Binding, usando a linguagem de programação Lua 

para acessar métodos de processamento raster implementados em linguagem C++ na 

biblioteca geoespacial TerraLib. Após o Binding, os métodos da TerraLib foram 

utilizados para preencher as lacunas existentes em imagens do sensor ETM+ a bordo 

do satélite Landsat-7.O artigo explora a utilização da interface SWIG para construir a 

comunicação entre Lua e C++. 

4.2.2. Artigo aceito para publicação no Symposium on Geoinformatics (Geoinfo) 

Em Dezembro de 2017 os resultados da normalização das imagens Landsat-

7/ETM+, Landsat-8/OLI e CBERS-4/MUX foram publicados no artigo “Spectral 



 
 

normalization between Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX bands 

through linear regression and spectral unmixing”. Este trabalho foi primeiramente 

apresentado como forma de resumo no 17º Workshop de Computação Aplicada do 

INPE (WORCAP 2017) e posteriormente no formato full paper nos anais do evento 

Symposium on Geoinformatics (Geoinfo 2017). 

Conforme anexo 4, o objetivo desse artigo consiste em comparar a 

normalização espectral de três sensores ópticos de média resolução espacial: 

Landsat-7/ETM+, Landsat-8/OLI e CBERS-4/MUX. Comparou-se duas abordagens, a 

normalização por regressão linear e a normalização por modelo linear de mistura 

espectral. 

Como resultado foi possível observar que as bandas espectrais dos canais com 

menor comprimento de onda estão menos correlacionadas. Foi observado também 

que existe uma correlação maior entre as imagens Landsat-7/ETM+ com Landsat-

8/OLI do que CBERS-4/MUX com Landsat-8/OLI. A abordagem utilizando regressão 

linear apresentou resultados mais consistentes que a do modelo linear de mistura 

espectral. 

  



 
 

5 Próximas etapas do trabalho 

Seguindo o cronograma da proposta de tese, os métodos propostos para 

análise de séries temporais serão implementados, testados e avaliados, podendo gerar 

uma publicação em revista. 

5.1. Cronograma da proposta de tese 

 

• Tarefa 1 – Revisão Bibliográfica; 

• Tarefa 2 – Obter e preprocessar dados; 

• Tarefa 3 – Compatibilização de dados de diferentes sensores; 

• Tarefa 4 – Preenchimento de lacunas por meio de variância em segmentação 

multiescala; 

• Tarefa 5 – Preenchimento de lacunas por casamento de template utilizando 

distância DTW; 

• Tarefa 6 – Validar resultados com um caso de estudo; 

• Tarefa 7 – Publicação dos resultados em conferências ou revistas 

internacionais; 

• Tarefa 8 – Escrita da tese. 
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Abstract
Our limited understanding of the climate controls on tropical forest seasonality is one of the
biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosys-
tems. Combining leaf production, litterfall and climate observations from satellite and ground
data in the Amazon forest, we show that seasonal variation in leaf production is largely trig-
gered by climate signals, specifically, insolation increase (70.4% of the total area) and pre-
cipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water
limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a suffi-
cient proportion of the trees to be observed from space. While tropical cycles are generally
defined in terms of dry or wet season, we show that for a large part of Amazonia the increase
in insolation triggers the visible progress of leaf growth, just like during spring in temperate
forests. The dependence of leaf growth initiation on climate seasonality may result in a
higher sensitivity of these ecosystems to changes in climate than previously thought.

Introduction
TheAmazonian forestsaccount for 14%of theglobal net primary production (NPP) and area
major component (66%) of theinter-annual variation in global NPP[1].Whilelargeseasonal
swingsin leaf areahavebeen reported at least in partsof theAmazon basin [2–4], theenviron-
mental controlsthat trigger thesynchronousdevelopment of new leavesarenot well under-
stood [5–7]. Asaresult, current earth systemmodelsinadequately represent thedynamicsof
leaf development, despiteitsmajor rolefor photosynthesisof tropical vegetation [8]. In equato-
rial forests, leaf flushingcorrelateswith increased light availability and photosynthetically active
radiation during thedry season [4, 9], and istheoretically driven by achangein daily insolation
[10]. However, water availability constrainsleaf phenology in southern Amazoniaandmost of
theCongo basin, impeding themaintenanceof theevergreen stateduring thedry season [11].
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Abstract: Post-classification comparison is one of the most widely used change detection methods.
However, it presents several operational problems that are often ignored, such as the occurrence of
impossible transitions, difficulties in accuracy assessment and results not accurate enough for the
purpose. This work aims to evaluate post-classification comparison change detection results obtained
from LANDSAT5/TM data in a region of the Brazilian Amazon, using three legends in different
levels of detail and both pixel wise and region based classifiers. A distinctive characteristic of the used
approach is that each change mapping is the result of the combination of 100 land cover classifications
for each date, obtained using varied training samples. This approach allowed to account for the
training samples choice into the methodology, as well as the construction of confidence mappings.
We presented and discussed different approaches for evaluating change results, such as the likelihood
of land cover transitions occurring within the study area and time gap, the use of rectangular matrices
to incorporate the occurrence of impossible or non evaluable changes and classification uncertainty.
In general, change mappings obtained from region based classifications showed better results than
the ones obtained from pixel based classifications. Globally, the use of region based approaches,
in contrast to pixel based ones, led to an increase in accuracy of 15.5% for the change mapping
from the most detailed legend, 7.8% for the one with the legend with intermediate level of detail
and 3.6% for the less detailed one. In addition, individual transitions between land cover classes
were better identified using region based approaches, with the exception of transitions from a non
agriculture class to an agricultural one. The proposed quality mappings are useful to help to evaluate
the change mappings, mainly in legend levels with higher level of detail and if reference samples are
unreliable or unavailable. It was possible to access, in a spatially explicit way, that at least 29.0% of
the pixel based change mapping and 21.9% of the region based one from the most detailed legend
were erroneous classified, without ground truth information on the evaluated date. These values
decreased to 0.5% and 1.4% (respectively the pixel and region based approaches) for results with the
legend with the intermediate level of detail and are non existent in the results from the less detailed
legend. The more generalized the legend (lower number of classes), the most similar are the accuracy
of region and pixel based change mappings. These accuracy values also increase as fewer classes
are considered in the legend, since similar classes are assembled during clustering, which reduces
the overlap between groups. However, this accuracy is still low for operational purposes in areas
with few changes, even considering the very high accuracy of the land cover classifications used
to generate the change mappings (land cover classification with Overall Accuracy higher than 0.98
resulted in change mappings with Overall Accuracy around 0.83).

Keywords: change detection; multi-legend; pixel based classification; region based classification; Amazon

Remote Sens. 2017, 9, 77; doi:10.3390/rs9010077 www.mdpi.com/journal/remotesensing



JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

dtwSat: Time-Weighted Dynamic Time Warping for

Satellite Image Time Series Analysis in R

Victor Maus
University of Münster

INPE, IIASA

Gilberto Câmara
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Abstract

The opening of large archives of satellite data such as LANDSAT, MODIS and the
SENTINELs has given researchers unprecedented access to data, allowing them to better
quantify and understand local and global land change. The need to analyse such large data
sets has lead to the development of automated and semi-automated methods for satellite
image time series analysis. However, few of the proposed methods for remote sensing time
series analysis are available as open source software. In this paper we present the R package
dtwSat. This package provides an implementation of the Time-Weighted Dynamic Time
Warping method for land cover mapping using sequence of multi-band satellite images.
Methods based on dynamic time warping are flexible to handle irregular sampling and
out-of-phase time series, and they have achieved significant results in time series analysis.
dtwSat is available from the Comprehensive R Archive Network and contributes to making
methods for satellite time series analysis available to a larger audience. The package
supports the full cycle of land cover classification using image time series, ranging from
selecting temporal patterns to visualising and assessing the results.

Keywords: dynamic programming, MODIS time series, land cover changes, crop monitoring.

1. Introduction

Remote sensing images are the most widely used data source for measuring land use and1

land cover change (LUCC). In many areas, remote sensing images are the only data available2

for this purpose (Lambin and Linderman 2006; Fritz et al. 2013). Recently, the opening of3

large archives of satellite data such as LANDSAT, MODIS and the SENTINELs has given re-4

searchers unprecedented access to data, allowing them to better quantify and understand local5

and global land change. The need to analyse such large data sets has lead to the development6

of automated and semi-automated methods for satellite image time series analysis. These7
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Campo Verde Database: Seeking to Improve
Agricultural Remote Sensing of Tropical Areas
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Abstract— In tropical/subtropical regions, the favorable
climate associated with the use of agricultural technologies, such
as no tillage, minimum cultivation, irrigation, early varieties,
desiccants, flowering inducing, and crop rotation, makes agri-
culture highly dynamic. In this letter, we present the Campo
Verde agricultural database. The purpose of creating and sharing
these data is to foster advancement of remote sensing technology
in areas of tropical agriculture, primarily the development and
testing of methods for crop recognition and agricultural mapping.
Campo Verde is a municipality of Mato Grosso state, localized in
the Cerrado (Brazilian Savanna) biome, in central west Brazil.
Soybean, maize, and cotton are the primary crops cultivated
in this region. Double cropping systems are widely adopted
in this area. There is also livestock and forestry production.
Our database provides the land-use classes for 513 fields by
month for one Brazilian crop year (between October 2015 and
July 2016). This information was gathered during two field
campaigns in Campo Verde (December 2015 and May 2016) and
by visual interpretation of a time series of Landsat-8/Operational
Land Imager (OLI) images using an experienced interpreter.
A set of 14 preprocessed synthetic aperture radar Sentinel-1
and 15 Landsat-8/OLI mosaic images is also made available.
It is important to promote the use of radar data for tropical
agricultural applications, especially because the use of optical
remote sensing in these regions is hindered by the high frequency
of cloud cover. To demonstrate the utility of our database, results
of an experiment conducted using the Sentinel-1 data set are
presented.

Index Terms— Agricultural mapping/monitoring, double
cropping systems, free available database, remote sensing,
synthetic aperture radar (SAR), tropical agriculture.

I. INTRODUCTION

FOOD security is a major concern worldwide and
faces the challenge of a continuously increasing global
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population and limited availability of natural resources.
Consequently, agriculture is a key economic activity world-
wide, primarily for food but also for fiber and energy (biofuel)
production.

Tropical areas have an important position in global food
production. Brazil, for instance, is one of the largest global
producers and exporters of sugar, coffee, orange juice,
soybean, maize, and beef. Brazil is also the lead producer
of sugarcane ethanol, an alcohol-based biofuel. Much of this
progress is the result of intense research in tropical agriculture.
The Brazilian Cerrado biome, for example, was previously
considered an area unsuitable for cultivation but has become
an agricultural frontier in recent decades and is currently
one of the top grain and beef-producing regions in the
world [1].

To assure that food production meets the world demands
and its environmental impacts are minimized, it is necessary to
monitor agriculture activities regularly. Compared to temperate
regions, this mission is considerably more challenging for
tropical agricultural areas because of the favorable climate
associated with the different cultivation systems adopted
(e.g., no tillage, minimum cultivation, irrigation, crop
rotation, and early varieties) cause intense dynamism and
demand year-round monitoring. For this purpose, satellite
remote sensing technology can contribute significantly, since
it offers repetitive, timely, and accurate information regarding
agricultural activity over large areas at relatively low cost [2].

Currently, a variety of high-quality remote sensing data
are available free of charge that can be used to monitor
agriculture, such as Moderate Resolution Imaging Spectro-
radiometer (MODIS) products and images from the Landsat
series. Several studies have been conducted in this field
using these data [2]–[4], but there is still considerable room
for advancement, especially in tropical areas. For example,
efficient methodologies to identify areas of double cropping
(i.e., two consecutive crops cultivated on the same land within
a single growing season) using multitemporal remote sensing
data have been developed [5], but it remains difficult to
identify which two crops are cultivated [4]. Moreover, most
crop pattern recognition research has been conducted using a
database of temperate regions [6], [7].

In optical remote sensing, cloud cover represents a
major constraint, especially in tropical countries [8]–[10].
Alternatives to overcome or at least minimize this problem
might be the combined use of data from different sensors,

1545-598X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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RESUMO 
Neste trabalho é apresentada uma metodologia para mapear e classificar a partir de imagens OLI/Landsat, níveis de 
intensidade de degradação florestal de forma semiautomática, e tem como área de estudo a região de Sinop, situada no 
estado do Mato Grosso. A abordagem metodológica constou de duas etapas: i) classificação espectral da imagem por meio 
da técnica de Modelo Linear de Mistura Espectral, para a geração de uma imagem-índice, combinando as frações solo e 
vegetação. Nessa etapa, a imagem resultante foi fatiada e os elementos indicadores de degradação florestal especificamente 
decorrentes de exploração madeireira, tais como, presença de pátios de estocagem, carreadores para derrubada e 
escoamento da madeira, e cicatrizes de fogo, foram identificados e mapeados; ii) classificação estrutural dos padrões de 
intensidade de degradação florestal considerado células de 1 km2. Técnicas que exploram as métricas de paisagem e de 
mineração de dados foram empregadas para classificação dos padrões de degradação. O desempenho da classificação, que 
teve como suporte informações coletadas em campo, apresentou exatidão global e índice Kappa de 96% e 91%, 
respectivamente. Os resultados obtidos mostraram que essa abordagem, por considerar a intensidade da degradação, pode 
ser replicada em estudos temporais de análise das condições da paisagem florestal, pois a célula, sendo uma unidade fixa 
no tempo e no espaço, possibilita mensurar a direção e magnitude da estrutura dos elementos associados à degradação e 
analisar os seus efeitos colaterais no espaço e no tempo. A metodologia proposta possibilitou gerar gradientes espaciais de 
intensidade de degradação florestal, cujas informações podem subsidiar o planejamento de políticas e de ações de controle 
e de fiscalização em áreas florestais.  

Palavras chaves: Degradação Florestal. Exploração Madeireira. Classificação Espectral, Mineração de dados 
Classificação Estrutural 

ABSTRACT 

Keywords:Forest Degradation, selective Logging, Spectral Classification, Data Mining, Structural Classification 

1. INTRODUÇÃO

A degradação florestal pode ser entendida como
um processo que resulta na alteração das condições 
biofísicas e estruturais originais dos sistemas florestais. 
Na literatura, contudo, não há um consenso quanto à sua 
definição que pode assumir, de acordo com o objetivo do 
estudo, um enfoque mais específico, geral ou operacional 
(LUND, 2009; PINHEIRO, 2015). No escopo do Sistema 
de Mapeamento da Degradação Florestal (DEGRAD), 
que faz parte do Programa de Monitoramento da Floresta 
Amazônia Brasileira por satélite, desenvolvido pelo INPE 
(2008), a degradação florestal é definida como o processo 

gradual e de longo prazo da perda da cobertura florestal 
por meio da extração seletiva de madeira e/ou da 
ocorrência de incêndios florestais. Esse conceito se 
aproxima mais da perspectiva operacional, pois especifica 
elementos que descrevem a degradação florestal e que 
são passíveis de serem detectadas com imagens de 
satélite e técnicas de processamento de imagens. Uma das 
vantagens do uso do conceito operacional de degradação, 
que é o utilizado neste trabalho, é que a revisita dos 
sensores orbitais que geram imagens periódicas de uma 
mesma área, possibilita ao usuário acompanhar todos os 
estágios de um determinado fenômeno que, no caso deste 
estudo, é o processo de degradação florestal. 
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Abstract

This paper presents innovative methods for using satellite image time se-
ries to produce land use and land cover classification over large areas in Brazil
from 2001 to 2016. We use MODIS time series data to classify natural
and human-transformed land areas in state of Mato Grosso, Brazil’s agri-
cultural frontier. Our hypothesis is that building high-dimensional spaces
using all values of the time series, coupled with advanced statistical learn-
ing methods, is a robust and efficient approach for land cover classification
of large data sets. We use the full depth of satellite image time series to
create large dimensional spaces for statistical classification. Data consists of
MODIS MOD13Q1 time series with 23 samples per year per pixel, and 4
bands (NVDI, EVI, nir and mir). By taking a series of labelled time series,
we feed a support vector machine model with a 92-dimensional attribute
space. Using a 5-fold cross validation, we obtained an overall accuracy of
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