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Abstract

The opening of large archives of satellite data such as LANDSAT, MODIS and the
SENTINELs has given researchers unprecedented access to data, allowing them to better
quantify and understand local and global land change. The need to analyze such large
data sets has led to the development of automated and semi-automated methods for satel-
lite image time series analysis. However, few of the proposed methods for remote sensing
time series analysis are available as open source software. In this paper we present the R
package dtwSat. This package provides an implementation of the time-weighted dynamic
time warping method for land cover mapping using sequence of multi-band satellite im-
ages. Methods based on dynamic time warping are flexible to handle irregular sampling
and out-of-phase time series, and they have achieved significant results in time series anal-
ysis. Package dtwSat is available from the Comprehensive R Archive Network (CRAN)
and contributes to making methods for satellite time series analysis available to a larger
audience. The package supports the full cycle of land cover classification using image time
series, ranging from selecting temporal patterns to visualizing and assessing the results.

Keywords: dynamic programming, MODIS time series, land cover changes, crop monitoring.

1. Introduction

Remote sensing images are the most widely used data source for measuring land use and
land cover change (LUCC). In many areas, remote sensing images are the only data available
for this purpose (Lambin and Linderman 2006; Fritz et al. 2013). Recently, the opening of
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2 dtwSat: Time-Weighted Dynamic Time Warping in R

large archives of satellite data such as LANDSAT, MODIS and the SENTINELs has given
researchers unprecedented access to data, allowing them to better quantify and understand
local and global land change. The need to analyze such large data sets has lead to the devel-
opment of automated and semi-automated methods for satellite image time series analysis.
These methods include multi-image compositing (Griffiths, Van der Linden, Kuemmerle, and
Hostert 2013), detecting forest disturbance and recovery (Kennedy, Yang, and Cohen 2010;
Zhu, Woodcock, and Olofsson 2012; DeVries, Verbesselt, Kooistra, and Herold 2015), crop
classification (Xiao et al. 2005; Wardlow, Egbert, and Kastens 2007; Petitjean, Inglada, and
Gancarski 2012; Maus, Câmara, Cartaxo, Sanchez, Ramos, and de Queiroz 2016), planted
forest mapping (le Maire, Dupuy, Nouvellon, Loos, and Hakamada 2014), crop expansion and
intensification (Galford, Mustard, Melillo, Gendrin, Cerri, and Cerri 2008; Sakamoto, Van,
Kotera, Nguyen, and Yokozawa 2009), detecting trend and seasonal changes (Lunetta, Knight,
Ediriwickrema, Lyon, and Worthy 2006; Verbesselt, Hyndman, Newnham, and Culvenor
2010a; Verbesselt, Hyndman, Zeileis, and Culvenor 2010b; Verbesselt, Zeileis, and Herold
2012), and extracting seasonality metrics from satellite time series (Jönsson and Eklundh
2002, 2004). Given the open availability of large image data sets, the Earth Observation
community would get much benefit from methods that are openly available, reproducible and
comparable. However, few of the proposed methods for remote sensing time series analysis are
available as open source software, the main exception being the BFAST and BFAST-monitor
algorithms for change detection (Verbesselt et al. 2010a,b). This paper is a contribution to
making methods for satellite time series analysis available to a larger audience.
In this paper we describe the dtwSat package (Maus 2019), written in the programming lan-
guages R (R Core Team 2018) and Fortran, and available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=dtwSat. The package pro-
vides an implementation of time-weighted dynamic time warping (TWDTW, Maus et al.
2016) for satellite image time series analysis.
The TWDTW method is an adaptation of the well-known dynamic time warping (DTW)
method for time series analysis (Velichko and Zagoruyko 1970; Sakoe and Chiba 1971, 1978;
Rabiner and Juang 1993; Berndt and Clifford 1994; Keogh and Ratanamahatana 2005; Müller
2007) for land cover classification. The standard DTWmethod compares a temporal signature
of a known event (e.g., a person’s speech) with an unknown time series. It finds all possible
alignments between two time series and provides a dissimilarity measure (Rabiner and Juang
1993). In contrast to standard DTW, the TWDTW method is sensitive to seasonal changes of
natural and cultivated vegetation types. It also considers inter-annual climatic and seasonal
variability. In a tropical forest area, the method has achieved a high accuracy for mapping
classes of single cropping, double cropping, forest, and pasture (Maus et al. 2016).
We chose R because it is an open source software that offers a large number of reliable
packages. The dtwSat package builds upon on a number of graphical and statistical tools
in R: dtw (Giorgino 2009), proxy (Meyer and Buchta 2018), zoo (Zeileis and Grothendieck
2005), mgcv (Wood 2000, 2003, 2004, 2006, 2011, 2016), sp (Pebesma and Bivand 2005;
Bivand, Pebesma, and Gómez-Rubio 2013), raster (Hijmans 2018), caret (Kuhn 2008), and
ggplot2 (Wickham 2009). Other R packages that are related and useful for remote sensing
and land cover analysis include landsat (Goslee 2011), rgdal (Bivand and Lewin-Koh 2018),
spacetime (Pebesma 2012; Bivand et al. 2013), bfast (Verbesselt et al. 2010a,b), bfastmonitor
(Verbesselt, Zeileis, and Herold 2011), bfastSpatial (Dutrieux and DeVries 2014), MODISTools
(Tuck, Phillips, Hintzen, Scharlemann, Purvis, and Hudson 2014), maptools (Bivand, Keitt,

https://CRAN.R-project.org/package=dtwSat
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and Rowlingson 2018), and lucc (Moulds, Buytaert, and Mijic 2015). Using existing packages
as building blocks, software developers in R save a lot of time and can concentrate on their
intended goals.
There is already an R package that implements the standard DTW method for time series
analysis: the dtw package (Giorgino 2009). In the dtwSat package, we focus on the specific
case of satellite image time series analysis. The analysis method implemented in the dtwSat
package extends that of the dtw package; it adjusts the standard DTW method to account
for the seasonality of different types of land cover. Our aim is to support the full cycle of
land cover classification, from selecting sample patterns to visualizing and assessing the final
result.
This paper focuses on the motivation and guidance for using the TWDTW method for remote
sensing applications. The full description of the method is available in a paper published by
the lead author (Maus et al. 2016). In what follows, Section 2 describes the application of
TWDTW (Maus et al. 2016) for satellite time series analysis. Section 3 gives an overview of
the dtwSat package. Then, Section 4 focuses on the analysis of a single time series and shows
some visualization methods. We then present an example of a complete land cover change
analysis for a study area in Mato Grosso, Brazil in Section 5.

2. The time-weighted dynamic time warping method
In this section, we describe the time-weighted dynamic time warping (TWDTW) algorithm in
general terms. For a detailed technical explanation, we refer to Maus et al. (2016). TWDTW
is a time-constrained version of the dynamic time warping (DTW) algorithm. Although the
standard DTW method is good for shape matching (Keogh and Ratanamahatana 2005), it is
not suited per se for satellite image time series analysis, since it disregards the temporal range
when finding the best matches between two time series (Maus et al. 2016). When using image
time series for land cover classification, one needs to balance between shape matching and
temporal alignment, since each land cover class has a distinct phenological cycle associated
with the vegetation (Reed, Brown, VanderZee, Loveland, Merchant, and Ohlen 1994; Zhang
et al. 2003). For example, soybeans and maize cycles range from 90 to 120 days, whereas
sugar-cane has a 360 to 720 days cycle. A time series with a cycle larger than 180 days
is unlikely to come from soybeans or maize. For this reason, Maus et al. (2016) include
a time constraint in DTW to account for seasonality. The resulting method is capable of
distinguishing different land cover classes.
The inputs to TWDTW are: (a) a set of time series of known temporal patterns (e.g.,
phenological cycles of land cover classes); (b) an unclassified long-term satellite image time
series. For each temporal pattern, the algorithm finds all matching subintervals in the long-
term time series, providing a dissimilarity measure (cf., Figure 1). The result of the algorithm
is a set of subintervals, each associated with a pattern and with a dissimilarity measure. We
then break the unclassified time series in periods according to our needs (e.g., yearly or
monthly). For each period, we consider all matching subintervals that intersect with it, and
classify them based on the land cover class of the best matching subinterval. In this way, the
long-term satellite time series is divided in periods, and each period is assigned a land cover
class.
To use TWDTW for land cover classification, we need the following data sets:
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Figure 1: Matches of the known temporal pattern to subintervals of the long-term time series.
The solid black line is the long-term time series, the colored lines are the different matches of
the same pattern, and the gray dashed lines are the matching points.
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Figure 2: A 3-dimensional array of satellite images (left), an enhanced vegetation index (EVI)
time series at the pixel location (x, y) (right). The arrows indicate gaps in the time series.
Adapted from Maus et al. (2016).

• A set of remote sensing time series for the study area. For example, a tile of a MODIS
MOD13Q1 image consists of 4800 × 4800 pixels, covering an area of 10 degrees × 10
degrees at the Equator (Didan 2015). A 15-year (2000–2015) MODIS MOD13Q1 set
time series has 23 images per year, with a total of 23 million time series, each with 346
samples.

• A set of time series with land cover information, called temporal patterns. Typically, each
time series is short and covers one phenological cycle of one land cover type. Examples
would be a time series of a soybean crop, or one that describes a mature tropical forest.
These temporal patterns can be extracted from the remote sensing image data, if the
user knows their spatial and temporal location.

• A set of ground truth points, with spatial and temporal information and land cover clas-
sification. These ground truth points are used for validation and accuracy assessment.
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Based on the information provided by the user about the images to be analyzed, our method
maps them to a three-dimensional (3-D) array in space-time (Figure 2). This array can
have multiple attributes, such as the satellite bands (e.g., “RED”, “NIR”, and “BLUE”),
and derived indices (e.g., “NDVI”, “EVI”, and “EVI2”). This way, each pixel location is
associated to a sequence of measurements, building a satellite image time series. Figure 2
shows an example of “EVI” time series for a location in the Brazilian Amazon from 2000 to
2008. In the first two years, the area was covered by forest that was cut in 2002. The area was
then used for cattle raising (pasture) for three years, and then for crop production from 2006
to 2008. Satellite image time series are thus useful to describe the dynamics of the landscape
and the land use trajectories.

3. dtwSat package overview
Package dtwSat provides a set of functions for land cover change analysis using satellite image
time series. This includes functions to build temporal patterns for land cover types, apply
the TWDTW analysis using different weighting functions, visualize the results in a graphical
interface, produce land cover maps, and create spatiotemporal plots for land changes. There-
fore, dtwSat gives an end-to-end solution for satellite time series analysis, which enables users
to make a complete land change analysis.
For the dtwSat package, the user should provide the following inputs:

• A set of time ordered satellite images, all with the same spatial extent. The user should
also inform the date of each image. In R the images should use the ‘RasterBrick’ or
‘RasterStack’ class of the raster package.

• A list of temporal patterns, each associated to a time series format of package zoo.

• A list of known ground truth points, each with spatial and temporal information, in a
format readable in R, such as CSV or shapefile.

The dtwSat package organizes the data in three S4 classes of objects: ‘twdtwTimeSeries’,
‘twdtwMatches’, and ‘twdtwRaster’. To store time series we use the class ‘twdtwTimeSeries’.
The objects of class ‘twdtwTimeSeries’ have two slots; the slot called timeseries has a list
of ‘zoo’ objects; and the slot called labels stores the labels of the time series. The class
‘twdtwMatches’ has three slots to store inputs and results of the TWDTW analysis. The
slots called timeseries and patterns are objects of the class ‘twdtwTimeSeries’ with the
unclassified long-term time series and the temporal patterns, respectively. A third slot called
alignments contains a ‘list’ object with detailed information about the matches between
the patterns and the unclassified long-term time series. The classes ‘twdtwTimeSeries’ and
‘twdtwMatches’ are used to analyze lists of time series.
The class ‘twdtwRaster’ is used for satellite image time series. This class can store either
unclassified raster time series with the satellite raw data, the results of the TWDTW analysis,
or a classified raster time series. In both cases, the objects of class ‘twdtwRaster’ have five
slots. The slot called timeseries is a list of ‘RasterBrick’ or ‘RasterStack’ objects with
time ordered satellite images (all with the same temporal and spatial extents); the slot called
timeline is a vector of class ‘Date’ with dates of the satellite images; the slot called layers
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has the names of satellite bands; the slot called levels has levels for the raster values; and
the slot called labels has labels for the raster values. This class builds upon the R package
raster to build a multi-attribute 3-D raster in space-time, allowing for multi-band satellite
image time series analysis.

4. Classifying a time series
This section describes how to classify one time series, using examples that come with the
dtwSat package. We will show how to match three temporal patterns (“soybean”, “cotton”,
and “maize”) to subintervals of a long-term satellite image time series. These time series
have been extracted from a set of MODIS MOD13Q1 (Didan 2015) images and include the
vegetation indices “NDVI”, “EVI”, and the original bands “NIR”, “RED”, “BLUE”, and
“MIR”. In this example, the classification of crop types for the long-term time series is known.

4.1. Input data

The inputs for the next examples are time series in zoo format. The first is an object of class
‘zoo’ with a long-term time series, referred to as MOD13Q1.ts, and the second is a list of time
series of class ‘zoo’ with the temporal patterns of “soybean”, “cotton”, and “maize”, referred
to as MOD13Q1.patterns.list.
From ‘zoo’ objects we construct time series of class ‘twdtwTimeSeries’, for which we have
a set of visualization and analysis methods implemented in the dtwSat package. The code
below builds two objects of class ‘twdtwTimeSeries’. The first has the long-term time series
and second has the temporal patterns. We use the plot method types "timeseries" and
"patterns" to show the objects ts in Figure 3 and MOD13Q1.ts in Figure 4, respectively.
This plot method uses ggplot2 syntax (Wickham 2009).

R> library("dtwSat")
R> names(MOD13Q1.patterns.list)

[1] "Soybean" "Cotton" "Maize"

R> head(MOD13Q1.ts, n = 2)

ndvi evi red nir blue mir
2009-08-05 0.3169 0.1687 0.1167 0.2250 0.0427 0.2193
2009-08-28 0.2609 0.1385 0.1168 0.1993 0.0548 0.2657

R> ts <- twdtwTimeSeries(MOD13Q1.ts, labels = "Time series")
R> patterns_ts <- twdtwTimeSeries(MOD13Q1.patterns.list)
R> patterns_ts

An object of class "twdtwTimeSeries"
Slot "timeseries" length: 3
Slot "labels": [1] "Soybean" "Cotton" "Maize"
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Figure 3: Example of time series based on MODIS product MOD13Q1 (Didan 2015). The
labels of the phenological cycle are shown in the plot.
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Figure 4: Temporal patterns of soybean, cotton, and maize based on MODIS product
MOD13Q1 (Didan 2015).

R> plot(ts, type = "timeseries") +
+ annotate(geom = "text", x = MOD13Q1.ts.labels$from + 90, y = 0.98,
+ label = MOD13Q1.ts.labels$label, size = 2)
R> plot(patterns_ts, type = "patterns")

TWDTW uses both amplitude and phase information to classify the phenological cycles in
the long-term time series. The differences in the amplitude and phase of the cycles are more
clear when we observe the EVI signal in Figures 3 and 4. The EVI peak of the “soybean”
time series has a similar amplitude as that of “cotton”. However, the “soybean” series peaks
in late December while the “cotton” series peaks in early April. The EVI peak of the “maize”
time series is at the same period as the peak of “cotton”. However, the “maize” time series
has a smaller amplitude than the “cotton” one. Therefore, by combining shape and time
information we can improve the time series classification.
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4.2. Detection of time series patterns with TWDTW

Each subinterval of the long-term time series in ts has a known phenological cycle. We will
now compare the known information with the result of the TWDTW algorithm. We use the
function twdtwApply that returns an R object of class ‘twdtwMatches’ with all matches of
each temporal pattern in the time series.

R> log_weight <- logisticWeight(alpha = -0.1, beta = 100)
R> matches <- twdtwApply(x = ts, y = patterns_ts, weight.fun = log_weight,
+ keep = TRUE)
R> slotNames(matches)

[1] "timeseries" "patterns" "alignments"

R> show(matches)

An object of class "twdtwMatches"
Number of time series: 1
Number of Alignments: 27
Patterns labels: Soybean Cotton Maize

To retrieve the complete information of the matches we set keep = TRUE. We need this
information for the plot methods of the class ‘twdtwMatches’. The argument weight.fun
defines the time-weight to the dynamic time warping analysis (Maus et al. 2016). By default
the time-weight is zero, meaning that the function will run a standard dynamic time warping
analysis. The arguments x and y are objects of class ‘twdtwTimeSeries’ with the unclassified
long-term time series and the temporal patterns, respectively. To perform the alignment
between the time series the default TWDTW recursion has a symmetric step (for more details
and other recursion options see ?stepPattern). Giorgino (2009) provides a detailed discussion
on the recursion steps and other step patterns. For further details and other arguments of
the TWDTW analysis see ?twdtwApply.
In our example we use a logistic weight function for the temporal constraint of the TWDTW
algorithm. This function is defined by logisticWeight. The dtwSat package provides two
in-built functions: linearWeight and logisticWeight. The linearWeight function with
slope a and intercept b is given by

ω = a · g(t1, t2) + b,

and the logisticWeight with midpoint beta, and steepness alpha, is given by

ω = 1
1 + e−α(g(t1,t2)−β) .

The function g is the absolute difference in days between two dates, t1 and t2. The aim of these
functions is to control the time warp, e.g., a “large time warp” is needed to match a point of
the temporal pattern whose original date is January 1 to a point of the long-term time series
whose date is July 1, on the other hand to match January 1 to December 15 has a “small time
warp”. If there is a large seasonal difference between the pattern and its matching point in time
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Figure 5: Logistic time-weight function logisticWeight with steepness alpha = -0.1 and
midpoint beta = 100. The x axis shows the absolute difference between two dates in days
and the y axis shows the time-weight (Maus et al. 2016).

series, an extra cost is added to the DTW distance measure. This constraint controls the time
warping and makes the time series alignment dependent on the seasons. This is especially
useful for detecting temporary crops and for distinguishing pasture from agriculture. The
linear function creates a strong time constraint even for small time differences, including
small time warps. The logistic function has a low weight for small time warps and significant
costs for bigger time warps, cf., Figure 5. In our previous studies (Maus et al. 2016) the
logistic-weight had better results than the linear-weight for land cover classification. Users
can define different weight functions as temporal constraints in the argument weight.fun of
the function twdtwApply.

4.3. Visualizing the result of the TWDTW algorithm

Package dtwSat provides five ways to visualize objects of class ‘twdtwMatches’ through the
plot types: "matches", "alignments", "classification", "path", and "cost". The plot
type "matches" shows the matching points of the patterns in the long-term time series;
the plot type "alignments" shows the alignments and dissimilarity measures; the plot type
"path" shows the low cost paths in the TWDTW cost matrix; and the plot type "cost" allows
the visualization of the cost matrices (local cost, accumulated cost, and time cost); and the
plot type "classification" shows the classification of the long-term time series based on
the TWDTW analysis. The plot methods for class ‘twdtwMatches’ return a ‘ggplot’ object,
so that users can further manipulate the result using the ggplot2 package. For more details
on visualization functions, please refer to the dtwSat documentation on CRAN (Maus 2019).
We now describe the plot types "matches" and "alignments". The code bellow shows how to
visualize the matching points of the four best matches of “soybean” pattern in the long-term
time series, cf., Figure 6.
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Figure 6: The four best matches of the “soybean” pattern in the time series using a logistic
time-weight. The solid black line is the long-term time series; the colored lines are the
temporal patterns; and the gray dashed lines are the respective matching points.

R> plot(matches, type = "matches", patterns.labels = "Soybean", k = 4)

The next example uses the plot type "alignments" to show the alignments of the temporal
patterns (see Figure 7). We set the threshold for the dissimilarity measure to be lower than 3.0.
This plot displays the different subintervals of the long-term time series that have alignments
whose dissimilarity is less than the specified threshold.

R> plot(matches, type = "alignments", attr = "evi", threshold = 3.0)

Figure 7 shows the alignments of each pattern over the long-term time series; note that we can
rank the alignments by their TWDTW dissimilarity, i.e., alignments overlapping the same
period usually have distinct dissimilarity, which can be used to rank them. In the figure we
can see that maize (blue lines) and cotton (green lines) overlap approximately for the same
time periods; however, they have distinct dissimilarity measures, and therefore, can be ranked.
Observing the time period from January 2010 to July 2010, soybean, maize, and cotton have
at least one overlapping alignment, however in this case the cotton pattern matches better to
the interval because its dissimilarity is lower than the others.

4.4. Classifying the long-term time series

Using the matches and their associated dissimilarity measures, we can classify the subinter-
vals of the long-term time series using twdtwClassify. To do this, we need to define a period
for classification and the minimum overlap between the period and the alignments that inter-
sect with it. For each interval, twdtwClassify will select the alignment that has the lowest
TWDTW dissimilarity taking into account the minimum overlap condition. For example, in
Figure 7 the interval from September 1st 2012 to March 1st 2013 has three overlapping align-
ments, maize in blue, cotton in green, and soybean in red. Without a minimum overlap the
function twdtwClassify would classify this interval as maize, which has the lowest dissimilar-
ity in the period. However, if we set a minimum overlap of 50%, the function twdtwClassify
classifies the interval as soybean, which is the only class whose alignment overlaps the interval
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Figure 8: Classification of each 6 months periods of the time series using results of the
TWDTW analysis with logistic time-weight. The solid lines are the attributes of the time
series, the background colors indicate the classification of the periods.

during more than 50% of the time. The interval of classification are usually defined according
to the phenological cycles or the agricultural calendar of the region. The classification interval
can also be irregular, for details see the argument breaks in ?twdtwClassify.
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In the example below we classify each period of 6 months from September 2009 to September
2013; we set a minimum overlap of 50% between the alignment and the classification period.
This means that at least 50% of the alignment has to be contained inside of the classification
period. We also use the plot type "classification" to show the classified subintervals of
the long-term time series.

R> ts_classification <- twdtwClassify(x = matches,
+ from = as.Date("2009-09-01"), to = as.Date("2013-09-01"),
+ by = "6 month", overlap = 0.5)
R> plot(ts_classification, type = "classification")

By comparing the results of the classified time series in Figure 8 with the crop cycles in
Figure 3 we see that the algorithm has classified correctly all the eight subintervals from 2009
to 2013, which are, respectively: “Soybean”, “Cotton”, “Soybean”, “Cotton”, “Soybean”,
“Maize”, “Soybean”, “Maize”.

5. Producing a land cover map
In this section we present an application of TWDTW for land cover change analysis using
satellite image time series. Our input is a set of images, each covering the same geographical
area at different times. Each pixel location is then associated to an unclassified satellite
image time series. We assume to have done field work in the area; for some pixel locations
and time periods, we know what is the land cover. We then will show how to obtain a set of
template patterns, based on the field samples and how to apply these patterns to land cover
classification of the set of images. In the end of this section we show how to use dtwSat for
land cover change analysis and accuracy assessment.
As an example we classify approximately 5300 km2 in a tropical forest region in Mato Grosso,
Brazil (Figure 9). This is a sequence of 160 images with 999 pixels each for 6 years, from 2007
to 2013. We also have a set of 603 ground truth samples of the following classes: “Forest”,
“Cotton-fallow”, “Soybean-cotton”, “Soybean-maize”, and “Soybean-millet”. The satellite
images and the field samples used in the examples come with dtwSat package.

5.1. Input data

The inputs are: (a) the satellite images for a given geographical area, organized as a set of
georeferenced raster files in GeoTIFF format, each containing all time steps of a spectral
band or index; and (b) a set of ground truth samples. The satellite images are extracted from
the MODIS product MOD13Q1 collection 5 (Didan 2015) and include vegetation indices
“NDVI”, “EVI”, and original bands “NIR”, “RED”, “BLUE”, and “MIR”. This product has
250 × 250 m spatial resolution and a 16 day maximum-value composite (MVC) for each pixel
location (Didan 2015), meaning that one image can have measurements from different dates.
For this reason, MOD13Q1 also includes the “day of the year” (DOY) of each pixel as a layer,
which we use to keep the time series consistent with the measurements.
The data files for the examples that follow are in the dtwSat installation folder
lucc_MT/data/. The *.tif files include the time series of “BLUE”, “RED”, “NIR”, “MIR”,
“EVI”, “NDVI”, and “DOY” (day of the year); the text file timeline has the dates of the
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Figure 9: Study area in Mato Grosso, Brazil, shown in a Google Earth image. The area was
originally covered by tropical forest that has been removed for agricultural use.

satellite images; the CSV file samples.csv has the longitude, latitude, from, to, and label
for each field sample; and the text file samples_projection contains information about the
cartographic projection of the samples, in the format of coordinate reference system used by
sp::CRS.

R> data_folder <- system.file("lucc_MT/data", package = "dtwSat")
R> dir(data_folder)

[1] "blue.tif" "doy.tif" "evi.tif"
[4] "mir.tif" "ndvi.tif" "nir.tif"
[7] "red.tif" "samples_projection" "samples.csv"

[10] "timeline"

We have stored all the time series for each band in one single file. In this way, we can use
the function raster::brick to read the satellite images. The algorithm also works when the
time steps for each band are split in many files. In this case, the user should call the function
raster::stack with the appropriate parameters. Because of processing performance, we
suggest that interested users group their images in bricks and follow the procedures given
below.

R> blue <- brick(paste(data_folder, "blue.tif", sep = "/"))
R> red <- brick(paste(data_folder, "red.tif", sep = "/"))
R> nir <- brick(paste(data_folder, "nir.tif", sep = "/"))
R> mir <- brick(paste(data_folder, "mir.tif", sep = "/"))
R> evi <- brick(paste(data_folder, "evi.tif", sep = "/"))
R> ndvi <- brick(paste(data_folder, "ndvi.tif", sep = "/"))
R> day_of_year <- brick(paste(data_folder, "doy.tif", sep = "/"))
R> dates <- scan(paste(data_folder, "timeline", sep = "/"), what = "dates")

We use these data sets to create a multiple raster time series, which is used in the next sections
for the TWDTW analysis. dtwSat provides the constructor twdtwRaster that builds a multi-
band satellite image time series. The inputs of this function are ‘RasterBrick’ objects with
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the same temporal and spatial extents, and a vector (timeline) with the acquisition dates
of the images in the format "YYYY-MM-DD". The argument doy is combined with timeline
to get the real date of each pixel, independently from each other. If doy is not provided then
the dates of the pixels are given by timeline, i.e., all pixels in one image will have the same
date. Products from other sensors, such as the SENTINELs and LANDSAT, usually have all
pixels with the same date, therefore the argument doy is not needed. This function produces
an object of class ‘twdtwRaster’ with the time series of multiple satellite bands.

R> raster_timeseries <- twdtwRaster(blue, red, nir, mir, evi, ndvi,
+ timeline = dates, doy = day_of_year)

Our second input is a set of ground truth samples in the CSV file samples.csv, which has
a total of 603 samples divided in five classes: 68 “cotton-fallow”, 138 “forest”, 79 “soybean-
cotton”, 134 “soybean-maize”, and 184 “soybean-millet”. By reading in this CSV file, we get
a ‘data.frame’ object, with the spatial location (latitude and longitude), starting and
ending dates (from and to), and the label for each sample.

R> field_samples <- read.csv(paste(data_folder, "samples.csv", sep = "/"))
R> head(field_samples, 5)

longitude latitude from to label
1 -55.98819 -12.03646 2011-09-01 2012-09-01 Cotton-fallow
2 -55.99118 -12.04062 2011-09-01 2012-09-01 Cotton-fallow
3 -55.98606 -12.03646 2011-09-01 2012-09-01 Cotton-fallow
4 -55.98562 -12.03437 2011-09-01 2012-09-01 Cotton-fallow
5 -55.98475 -12.03021 2011-09-01 2012-09-01 Cotton-fallow

R> table(field_samples[["label"]])

Cotton-fallow Forest Soybean-cotton Soybean-maize Soybean-millet
68 138 79 134 184

R> proj_str <- scan(paste(data_folder, "samples_projection", sep = "/"),
+ what = "character")
R> proj_str

[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

5.2. Assessing the separability of temporal patterns

The classification is highly dependent on the quality of the temporal patterns. Therefore, it is
useful to perform an analysis to assess the separability of the temporal patterns. Ideally, one
would need patterns that, when applied to the set of unknown time series, produce consistent
results (see the guidelines for single time series analysis in Section 4). For this reason, before
performing the land cover mapping, we perform a cross-validation step. In this way, the users
would assess the separability of their patterns before classifying a large data set.
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In the next example we use the function getTimeSeries to extract the time series of each
field sample from our raster time series. The arguments of the function are a set of raster time
series, a ‘data.frame’ with spatial and temporal information about the fields samples (as in
the object field_samples given above), and the argument proj4string with the projection
information. The projection should follow the sp::CRS format. The result is an object of
class ‘twdtwTimeSeries’ with one time series for each field sample.

R> field_samples_ts <- getTimeSeries(raster_timeseries, y = field_samples,
+ proj4string = proj_str)
R> field_samples_ts

An object of class "twdtwTimeSeries"
Slot "timeseries" length: 603
Slot "labels": [1] "Cotton-fallow" "Cotton-fallow" "Cotton-fallow"

To perform the cross-validation we use the function twdtwCrossValidate. This function
splits the sample time series into training and validation sets using stratified sampling with a
simple random sampling within each stratum, for details see ?caret::createDataPartition.
The function uses the training samples to create the temporal patterns and then classifies the
remaining validation samples using twdtwApply. The results of the classification are used in
the accuracy calculation.
A generalized additive model (GAM; Hastie and Tibshirani 1986; Wood 2011) generates the
smoothed temporal patterns based on the training samples. We use the GAM because of its
flexibility for non-parametric fits, with less rigorous assumptions on the relationship between
response and predictor. This potentially provides better fit to satellite data than purely
parametric models, due to the data’s inter- and intra-annual variability.
In the next example we set the arguments times = 100 and p = 0.1, which creates 100
different data partitions, each with 10% of the samples for training and 90% for validation.
The other arguments of this function are: the logistic weight function with steepness -0.1
and midpoint 50 to weight.fun; the frequency of the temporal patterns to 8 days freq = 8,
and the GAM smoothing formula to formula = y ~ s(x), where function s sets up a spline
model, with x the time and y a satellite band (for details see ?mgcv::gam and ?mgcv::s).
The output is an object of class ‘twdtwCrossValidation’ which includes the accuracy for
each data partition. The object has two slots, the first called partitions has the index of
the samples used for training, the second called accuracy has the overall accuracy, the user’s
accuracy, the producer’s accuracy, the error matrix, and the data used in the calculation, i.e.,
reference classes, predicted classes, and the TWDTW distance measure.

R> set.seed(1)
R> log_fun <- logisticWeight(alpha = -0.1, beta = 50)
R> cross_validation <- twdtwCrossValidate(field_samples_ts,
+ times = 100, p = 0.1, freq = 8, formula = y ~ s(x, bs = "cc"),
+ weight.fun = log_fun)

Figure 10 and Table 1 show the 95% confidence interval of the mean for user’s and producer’s
accuracy derived from the hundred-fold cross-validation analysis. The user’s accuracy gives
the confidence and the producer’s accuracy gives the sensitivity of the method for each class.
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User’s Producer’s Overall
Class µ σ ci µ σ ci µ σ ci

Cotton-fallow 0.96 (0.01) [0.96–0.96] 1.00 (0.00) [1.00–1.00] 0.98 (0.02) [0.97–0.98]
Forest 1.00 (0.00) [1.00–1.00] 1.00 (0.00) [1.00–1.00]

Soybean-cotton 0.99 (0.03) [0.98–1.00] 0.89 (0.02) [0.89–0.89]
Soybean-maize 0.94 (0.05) [0.93–0.95] 1.00 (0.01) [1.00–1.00]
Soybean-millet 1.00 (0.01) [1.00–1.00] 0.98 (0.05) [0.97–0.99]

Table 1: User’s and producer’s accuracy of the TWDTW cross-validation using 100
resampling-with-replacement. The table shows the standard deviation (σ) and the 95% con-
fidence interval (ci) of the mean (µ).
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Figure 10: User’s and producer’s accuracy of the TWDTW cross-validation using 100
resampling-with-replacement. The plot shows the average of user’s and producer’s accu-
racy from cross-validation with 95% confidence interval and the obtained accuracy values as
points for each land use class.

In our analysis all classes had high user’s and producer’s accuracy, meaning that TWDTW has
high confidence and sensitivity for the classes included in the analysis. The cross-validation
results show that if we randomly select 10% of our samples to create temporal patterns we
can get an overall accuracy of at least 97% in the classification of the remaining samples with
95% confidence level.

R> plot(cross_validation, conf.int = 0.95) +
+ geom_jitter(size = 0.2, width = 0.1)

5.3. Creating temporal patterns

In the last section we observed that the land cover classes based on our samples are separable
using the TWDTW algorithm with high confidence level. Now we randomly select 10% of
our samples for training and keep the remaining 90% for validation. The first set of samples
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Figure 11: Temporal patterns of Forest, Cotton-fallow, Soybean-cotton, Soybean-maize, and
Soybean-millet based on the ground truth samples.

are used to create temporal patterns and classify the raster time series, and the second set of
samples to assess the final maps. Ideally we would need a second independent set of samples
to assess the map, but it would be very difficult to identify different crops without field work.
Therefore, we use the same samples used in the cross-validation (Section 5.2).

R> library("caret")
R> set.seed(1)
R> I <- unlist(createDataPartition(field_samples[, "label"], p = 0.1))
R> training_ts <- subset(field_samples_ts, I)
R> validation_samples <- field_samples[-I, ]

We use the function createPatterns to produce the temporal patterns based on the training
samples. For that, we need to set the desired temporal frequency of the patterns and the
smoothing function for the GAM model. In the example below, we set freq = 8 to get
temporal patterns with a frequency of 8 days, and the GAM smoothing formula formula =
y ~ s(x), such as in Section 5.2.

R> temporal_patterns <- createPatterns(training_ts, freq = 8,
+ formula = y ~ s(x))

The result of the function createPatterns is an object of the class ‘twdtwTimeSeries’.
We use the plot method type = "patterns" to show the results of the createPatterns in
Figure 11.
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Figure 12: Illustration of the TWDTW dissimilarity from each temporal pattern in 2008. The
blue areas are more similar to the pattern and the red areas are less similar to the pattern.

R> plot(temporal_patterns, type = "patterns") +
+ theme(legend.position = c(0.8, 0.21))

Our method is not restricted to cases where the temporal patterns are obtained from the set
of images, such as in the example above. One can also use patterns from a different set of
images or defined in other studies, as long as these temporal patterns stand for the study area
and their bands match the bands in the unclassified images.

5.4. Classifying the image time series
After obtaining a consistent set of temporal patterns, we use the function twdtwApply to run
the TWDTW analysis for each pixel location in the raster time series. The input raster time
series in the object twdtwRaster should be longer or have approximately the same length
as the temporal patterns. This function retrieves an object of class ‘twdtwRaster’ with the
TWDTW dissimilarity measure of the temporal patterns for each time period. The arguments
overwrite and format are passed to raster::writeRaster. The arguments weight.fun and
overlap are described in Section 4. Here we set the parameters of the time weight (logistic
function) based on our experience about the phenological cycle of the vegetation in the study
area. In the next example, we classify the raster time series using the temporal patterns in
temporal_patterns obtained as described above. The result is a ‘twdtwRaster’ with five
layers; each layer contains the TWDTW dissimilarity measure for one temporal pattern over
time. We use the plot type "distance" to illustrate the TWDTW dissimilarity for each
temporal pattern in 2008, cf., Figure 12.
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Figure 13: Land cover maps for each year from 2008 to 2013.

R> log_fun <- logisticWeight(alpha = -0.1, beta = 50)
R> twdtw_dist <- twdtwApply(x = raster_timeseries, y = temporal_patterns,
+ overlap = 0.5, weight.fun = log_fun, overwrite = TRUE,
+ format = "GTiff")
R> plot(x = twdtw_dist, type = "distance")

The results of the example above can be used to create categorical land cover maps. The
function twdtwClassify selects the most similar pattern for each time period and retrieves a
‘twdtwRaster’ object with the time series of land cover maps. The resulting object includes
two layers, the first has the classified categorical maps and the second has the TWDTW
dissimilarity measure.

R> land_cover_maps <- twdtwClassify(twdtw_dist, format = "GTiff",
+ overwrite = TRUE)

5.5. Looking at the classification results

The classification results can be visualized using the plot methods of the class ‘twdtwRaster’,
which supports four plot types: "maps", "area", "changes", and "distance". The type =
"maps" shows the land cover classification maps for each period, cf., Figure 13.

R> plot(x = land_cover_maps, type = "maps")

Using the plot type = "area" we show the area of each class over time (Figure 14).

R> plot(x = land_cover_maps, type = "area")
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Figure 14: Percentage of area for each land cover class from 2008 to 2013.
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Figure 15: Gains and losses in area from the other classes. The y axis shows the actual class;
the positive direction of x axis shows the gains and the negative direction of x axis shows the
losses of the classes indicated in y. Colors indicate to which class the gain/loss belongs.
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Figure 16: TWDTW dissimilarity measure for each pixel over each classified period. The
blue areas have high confidence and the red areas have low confidence in the classification.

Users can also view the land cover transition for each time period, by setting type =
"changes". For each land cover class and each period, the plot shows gains and losses in
area from the other classes. This is the visual equivalent of a land transition matrix, cf.,
Figure 15.

R> plot(x = land_cover_maps, type = "changes")

Using the plot type = "distance" we can visualize the dissimilarity of each classified pixel
to the original temporal pattern, see Figure 16.

R> plot(x = land_cover_maps, type = "distance")

5.6. Assessing classification accuracy

In this section we show how to assess the classification. dtwSat provides a function called
twdtwAssess, which computes a set of accuracy metrics, and adjusted area such as proposed
by Olofsson, Foody, Stehman, and Woodcock (2013) and Olofsson, Foody, Herold, Stehman,
Woodcock, and Wulder (2014). The inputs of this function are the classified map (an object
of class ‘twdtwRaster’), and a set of samples for validation (an object of class ‘data.frame’
or ‘SpatialPointsDataFrame’ from package sp). Besides coordinates, the samples should
also have starting dates, ending dates, and labels compatible with the labels in the map (for
details see Section 4.1). The output of twdtwAssess is an object of class ‘twdtwAssessment’,
which includes four slots: (1) accuracyByPeriod is a list of metrics for each time period,
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Total Area w

Cotton-fallow 61 0 3 0 0 64 47600561 0.148
Forest 0 124 0 0 0 124 74701218 0.232

Soybean-cotton 0 0 62 0 0 62 18836299 0.059
Soybean-maize 0 0 6 120 0 126 110227229 0.343
Soybean-millet 0 0 0 0 165 165 70300716 0.219

Total 61 124 71 120 165 541 321666022 1.000

Table 2: Error matrix of the map classification based on the TWDTW analysis. The area is
in the map unit, in this case m2. w is the proportion of area mapped for each class.
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Total User’s∗ Producers’s∗ Overall∗
Cotton-fallow 0.14 0.00 0.00 0.00 0.00 0.14 0.95±0.05 1.00±0.00 0.98±0.01

Forest 0.00 0.23 0.00 0.00 0.00 0.23 1.00±0.00 1.00±0.00
Soybean-cotton 0.01 0.00 0.06 0.02 0.00 0.08 1.00±0.00 0.72±0.13
Soybean-maize 0.00 0.00 0.00 0.33 0.00 0.33 0.95±0.04 1.00±0.00
Soybean-millet 0.00 0.00 0.00 0.00 0.22 0.22 1.00±0.00 1.00±0.00

Total 0.15 0.23 0.06 0.34 0.22 1.00

Table 3: Accuracy and error matrix in proportion of area of the classified map. ∗ 95%
confidence interval.

including overall accuracy, user’s accuracy, producer’s accuracy, error matrix (confusion ma-
trix), and adjusted area. (2) accuracySummary has the accuracy and adjusted area accu-
mulated over all time periods. (3) data is a ‘SpatialPointsDataFrame’ object with sample
ID, period ID, starting date, ending date, reference label, predicted label, and TWDTW
distance. (4) map is a ‘twdtwRaster’ object with the raster maps. The next example uses
twdtwAssess to compute the accuracy of the maps (land_cover_maps) using the validation
samples (validation_samples) with a 95% confidence level.

R> maps_assessment <- twdtwAssess(land_cover_maps, y = validation_samples,
+ proj4string = proj_str, conf.int = 0.95)

The results of the assessment in Tables 2, 3, and 4 are accumulated over the whole time
period, i.e., the total mapped area is equal to the surface area times the number of maps. It
is possible to assess and visualize each period independently from each other. However, our
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Figure 17: Incorrect classified samples.

samples are irregularly distributed over time and some classes do not have samples in all time
period, which limits the analysis of each time period independently from each other.
As we can see in Table 2 only nine samples were misclassified, all of them from the reference
class “Soybean-cotton”. From these samples six were classified as “Soybean-maize”, and three
as “Cotton-fallow”. As we see in Table 3 the only class with producer’s accuracy lower
than 100% was “Soybean-cotton”, reaching 72% with high uncertainty (±13%). The user’s
accuracy for all classes was higher than 95%, with maximum uncertainty of ±5%.
The user can visualize misclassified samples on top of the maps using the plot type = "map"
for objects of class ‘twdtwAssessment’. The argument samples can also be set to show
correctly classified samples samples = "correct", or to see all samples samples = "all".
Figure 17 shows that the misclassified samples are all in the map from 2012. The six samples
of “Soybean-cotton” classified as “Soybean-maize” are within a big area of “Soybean-maize”
and the three samples of “Soybean-cotton” classified as “Cotton-fallow” are near the border
between these two classes. This errors might be related to the mixture of different classes in
the same pixel.

R> plot(x = maps_assessment, type = "map", samples = "incorrect")

In Table 4 we can see the mapped and the adjusted area. This is the accumulated area
over the whole period, i.e., the sum of all maps from 2008 to 2013. As the “Forest” and
“Soybean-millet” did not have omission (100% producer’s accuracy) or comission (100%
user’s accuracy) errors, we immediately see that their mapped area is equal to their ad-
justed area (Table 4). To help the analysis of the other classes we use the plot type
= "area" for class ‘twdtwAssessment’, i.e., plot(x = maps_assessment, type = "area",
perc = FALSE). Figure 18 shows the accumulated area mapped and adjusted for all classes.
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Class Mapped area Adjusted area Margin of error∗

Cotton-fallow 47600561 45369285 ±2484480
Forest 74701218 74701218 ±0

Soybean-cotton 18836299 26316491 ±4806920
Soybean-maize 110227229 104978313 ±4115074
Soybean-millet 70300716 70300716 ±0

Table 4: Mapped and adjusted area, accumulated over the whole period, i.e., the sum of the
maps from 2008 to 2013. The area is in the map unit, in this case m2. ∗ 95% confidence level.
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Figure 18: Mapped and adjusted area, accumulated over the whole period, i.e., the sum from
the sum of the maps from 2008 to 2013. The area is in the map unit, in this case m2.

In this figure we see that our method overestimated the area of “Soybean-maize”, i.e., the
mapped area (110227229 m2) is bigger than the adjusted area (104978313 m2) plus the con-
fidence interval 4115074 m2. Meanwhile we underestimated the area of “Soybean-cotton”,
i.e., its mapped area (18836299 m2) is smaller than the adjusted area (26316491 m2) plus
the confidence interval (4806920 m2). The mapped area of “Cotton-fallow” (47600561 m2) is
within the confidence interval of the adjusted area (45369285 ± 2484480 m2).

6. Conclusions and discussion
The overall accuracy of the classification with a 95% confidence level is within 97% and
99%. With same confidence level, user’s and producer’s accuracy are between 90% and
100% for all classes, except for “Soybean-cotton”, which has a wide confidence interval for
user’s accuracy, between 59% and 85%. A small sample size will likely have large confidence
intervals (Foody 2009), therefore, this analysis could be improved by increasing the number
of “Soybean-cotton” samples. In addition, our access to field information is limited to a set
of samples irregularly distributed over time, which are not enough to assess each mapped
period independently from each other. Nevertheless, the results of the accuracy assessment
show that the TWDTW method has great potential to classify different crop types.
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DTW based approaches have achieved good results for land cover classification (Petitjean et al.
2012; Maus et al. 2016), however, a reduced number of points in the time series will negatively
impact the accuracy. Remotely sensed images often present noise and poor coverage due to
clouds, aerosol load, surface directional effects, and sensor problems. This leads to large
amount of gaps in satellite image time series. Therefore, methods that deal with irregular
temporal sampling, i.e., irregular sampling intervals, have great potential to fully exploit the
available satellite images archive. DTW is known to be one of the most robust methods
for irregular time series (Keogh and Ratanamahatana 2005; Tormene, Giorgino, Quaglini,
and Stefanelli 2009). It was successfully applied for satellite time series clustering using
FORMOSAT-2 (Petitjean et al. 2012) and using MODIS (Maus et al. 2016). Petitjean et al.
(2012), for example, showed that clustering based on DTW is consistent even when there
are several images missing per year because of cloud cover. However, the effect of a reduced
number of samples in the time needs to be better evaluated in order to point out the limiting
gap size for satellite image time series analysis using DTW based methods.
DTW searches for matches of a temporal pattern, therefore the number of points in the time
series should represent the phenological cycles of the different land cover types. The number
of available observations might be a limitation for sensors with lower temporal resolution,
such as LANDSAT. We believe that this limitation could be addressed, for example, by
combining TWDTW analysis with pixel-based compositing techniques (Griffiths et al. 2013;
White et al. 2014). These approaches have become more popular with the opening of the
USGS LANDSAT archive and could be used to increase the availability of gap-free time series
(Gómez, White, and Wulder 2016).
Package dtwSat provides a dissimilarity measure in the n-dimensional space, allowing mul-
tispectral satellite image time series analysis. Our experience using MODIS data sets has
shown that n-dimensional analysis, i.e., using RED, NIR, NDVI, EVI, and NDVI, increases
the separability among classes compared to single band analysis, for example using only EVI
or NDVI. Further studies on multispectral data using TWDTW analysis will help to optimize
the selection of bands.
The main goal of package dtwSat is to make TWDTW methods accessible for researchers.
The package supports the full cycle of land cover classification using image time series, ranging
from selecting temporal patterns to visualizing and assessing the results. The current version
of the dtwSat package provides a pixel-based time series classification method. We envisage
that future versions of the package could include local neighborhoods to reduce border effects
and improve classification homogeneity.
The dtwSat package provides two in-built functions for linear and logistic time weights. In
the current version of the package the parameters of the weight functions are set manually
to the same value for all land cover classes. Future versions could include methods to search
for the best parameters for each land cover class using field data.
Nowadays, there are large open archives of Earth Observation data, but few open source
methods for analyzing them. With this motivation, this paper provides guidance on how
to use the TWDTW method for remote sensing applications. As we have discussed in a
companion paper (Maus et al. 2016), the TWDTW method is well suited for land cover
change analysis of satellite image time series.
The TWDTW algorithm is computationally intensive and for large areas one should consider
parallel processing. The algorithm is pixel time series based, i.e., each time series is pro-
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cessed independently from each other, and therefore, it can be easily parallelized. To aim
for maximum usage by the scientific community, the dtwSat package described in this paper
works with well-known R data classes such as provided by raster, which offers the option
to work with raster data sets stored on disk that are too large to be loaded into memory
(RAM) at once (Hijmans 2018). We are planning improvements, so that dtwSat can also be
combined with array databases, such as SciDB (Stonebraker, Brown, Zhang, and Becla 2013).
We believe that combining array databases with image time series analysis software such as
presented here is one way forward to scaling the process of information extracting from very
large Earth Observation data.
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