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Abstract—This paper presents a time-weighted version of the5

dynamic time warping (DTW) method for land-use and land-cover6

classification using remote sensing image time series. Methods7

based on DTW have achieved significant results in time-series data8

mining. The original DTW method works well for shape match-9

ing, but is not suited for remote sensing time-series classification.10

It disregards the temporal range when finding the best alignment11

between two time series. Since each land-cover class has a specific12

phenological cycle, a good time-series land-cover classifier needs13

to balance between shape matching and temporal alignment. To14

that end, we adjusted the original DTW method to include a tem-15

poral weight that accounts for seasonality of land-cover types. The16

resulting algorithm improves on previous methods for land-cover17

classification using DTW. In a case study in a tropical forest area,18

our proposed logistic time-weighted version achieves the best over-19

all accuracy of 87.32%. The accuracy of a version with maximum20

time delay constraints is 84.66%. A time-warping method without21

time constraints has a 70.14% accuracy. To get good results with22

the proposed algorithm, the spatial and temporal resolutions of the23

data should capture the properties of the landscape. The pattern24

samples should also represent well the temporal variation of land25

cover.26

Index Terms—Dynamic programming, image sequence27

analysis, monitoring, pattern classification, time series.28

I. INTRODUCTION29

T HERE is a global increase in food and energy production30

from agriculture to keep 7.3 billion people. To support31

sustainable practices and find out about unsustainable uses of32

natural resources, good quality land-use and land-cover datasets33

are essential [1]. Earth observation satellites are the only source34

that provides a continuous and consistent set of information35

about the Earth’s land and oceans. Since remote sensing satel-36

lites revisit the same place repeatedly, we can calibrate their37

images so that measures of the same place in different times38
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are comparable. These observation can be organized in regular 39

time intervals, so that each measure from sensor is mapped into 40

a three-dimensional (3-D) array in space-time. 41

From a data analysis perspective, researchers then have 42

access to space-time datasets. This has lead to much recent 43

research on satellite image time-series analysis. Algorithms for 44

analyzing image time series include methods for time-series 45

reconstruction [2], detecting trend and seasonal changes [3]– 46

[5], extracting seasonality information [6], land-cover mapping 47

[7], detecting forest disturbance and recovery [8]–[10], crop 48

classification [11]–[13], planted forest mapping [14], and crop 49

expansion and intensification [15], [16]. 50

Research on time-series data mining shows that methods 51

based on dynamic time warping (DTW) have achieved signif- 52

icant results in many applications [17]–[19]. DTW works by 53

comparing a temporal signature of a known event (e.g., a per- 54

son’s speech) to an unknown time series (e.g., a speech record 55

of unknown origin) [17], [20]–[23]. The algorithm compares 56

two time series and finds their optimal alignment, providing a 57

dissimilarity measure as a result [23]. DTW provides a robust 58

distance measure for comparing time series, even if they are 59

irregularly sampled [13] or are out of phase in the time axis 60

[24]. The large range of applications of digital time warping 61

for time series analysis motivated our idea of using DTW for 62

remote sensing applications. 63

The DTW method works well for shape matching, but is 64

not suited per se for remote sensing time-series classification. 65

It disregards the temporal range when finding the best align- 66

ment between two time series [23], [25]. Each land-cover class 67

has a distinct phenological cycle that is relevant for space-time 68

classification [26], [27]. Therefore, a good time-series land- 69

cover classifier needs to balance between shape matching and 70

temporal alignment. For example, although crops tend to vary 71

their annual phenological cycles, these variations will not be 72

extreme. Consider a set of samples of soybean whose cycles 73

range from 90 to 120 days. A time series with similar shape but 74

with much larger cycle is unlikely to come from a soybean crop. 75

The standard DTW method warps time to match the two series. 76

To avoid such mismatches, we introduce a time constraint that 77

helps to distinguish between different types of land-use and 78

land-cover classes. 79

Recent papers by [13] and [28] have used DTW for satel- 80

lite image time-series classification. The method proposed in 81

these papers sets a maximum time delay to avoid inconsistent 82

temporal distortions based on the date of the satellite images. 83

The time series is split in 1 year segments to match the agri- 84

cultural phenological cycle in Europe. However, this temporal 85

1939-1404 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. (a) 3-D array of satellite images. (b) Vegetation index time series I at the pixel location (x, y). Arrows indicate data gaps.F1:1

segmentation reduces the power of the DTW classifier. Crops86

with phenological cycles longer than 1 year or taking place87

in different seasons may not be detected. The time-weighted88

extension to the DTW algorithm avoids this problem. Temporal89

segments of a remote sensing time series are classified with-90

out splitting them into fixed parts. This method is flexible to91

account for multiyear crops, single cropping, and double crop-92

ping. It is also robust to account for other land-cover types such93

as forest and pasture and works with a small amount of training94

samples.95

Our main contribution is to show that a data mining method96

such as DTW, when used for land-use and land-cover classifi-97

cation of remote sensing time series, benefits from a temporal98

constraint. This conjecture has been validated in a case study99

in the Brazilian Amazon, where we compared the result of our100

proposed method with other time-warping classifiers.101

II. METHODS102

Since remote sensing satellites cycle the Earth at regular103

intervals, their data are mappable to 3-D arrays in space-time104

[Fig. 1(a)]. Each pixel location (x, y) in consecutive times,105

t1, . . . , tm, makes up a satellite image time series, such as the106

one in Fig. 1(b). From these time series, we can extract land-use107

and land-cover information. In the example, during the first 2108

years the area was covered by forest. It was deforested in 2002.109

The area was then used for cattle raising (pasture) for 3 years.110

From 2006 to 2008, it was used for crop production.111

Let Vx,y = (v1, v2, . . . , vm) be a time series of a pixel loca-112

tion (x, y) in consecutive times, t1, . . . , tm, where vi is the113

value of the sensor measure at time ti. Combining all the114

satellite’s spatial coverage, we get a set of time series S =115

{V1,V2, . . . ,Vs}. We assume that there is a temporal con-116

tinuity for each land use classes, resulting from human actions.117

A forest area does not change to grassland or to soybeans118

overnight. Land-use changes take time. Our hypothesis is that119

it is possible to associate closed intervals of each time series120

Vx,y to a specific land-use and land-cover type. For example,121

suppose a 10-year period where in the first 5 years the area was122

covered by forest. The area was then used for cattle raising123

(pasture) for 2 years. After that, it was used for soybean pro- 124

duction for 3 years. We want to associate each of these intervals 125

with one of our land classes. 126

Optical remotely sensed data are affected by cloud cover 127

that introduces a large amount of noise in satellite image time 128

series, as shown in Fig. 1(b). Inter-annual climate variability 129

also changes the phenological cycles of the vegetation, result- 130

ing in time series whose periods and intensities do not match 131

on an year-to-year basis [26]. To associate intervals of a satel- 132

lite image time series with land-cover and land-use classes, we 133

need methods suitable for noisy and out-of-phase time series. 134

We chose the DTW algorithm because it is suitable for this 135

problem. 136

The papers by [13] and [28] applied the DTW algorithm 137

to classify intervals of satellite image time series, such as in 138

Fig. 2(a). In this case, two time series have approximately the 139

same length and the first and last points in both time series 140

must match. In practice, crop phenological cycles can vary 141

in an year-to-year basis, depending on climate conditions and 142

land management. Examples include shifting the greenup and 143

dormancy stages of the vegetation [26], [27]. To avoid pos- 144

sible inconsistent matching of phenological cycles caused by 145

splitting the time series, we use an open boundary version of 146

DTW, Fig. 2(b). The open boundary method does not require 147

two time series to be of the same length, and it is suitable to 148

find all possible matches of one pattern within a long-term time 149

series [29]. 150

The open boundary DTW algorithm disregards the time 151

dimension and can cause inconsistent phase alignments, e.g., 152

a winter crop template can match the shape of a summer 153

crop. To avoid these temporal inconsistencies, we introduce 154

a temporal constraint. If there is a large seasonal difference 155

between the sample pattern and its match in time series, an 156

extra cost is added to the DTW distance measure. This con- 157

straint controls the time warping and makes the time-series 158

alignment dependent on the seasons. This is especially useful 159

for detecting temporary crops and for distinguishing pasture 160

from agriculture. 161

Classification using open boundary DTW [29] requires 162

matching subsequences of the time-series associated with 163
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Fig. 2. (a) DTW alignment between two time series with approximately same length. (b) DTW alignments between a pattern whose length is much shorter than

the time series. Indexes a and b are starting points and ending points of each interval in the long-term time series, respectively.

F2:1

F2:2

Fig. 3. Accumulated cost matrix D showing three possible alignment of the

pattern U within the long-term time series V. Indexes a are starting points and

b ending points of each DTW alignment in V.

F3:1

F3:2

F3:3

each pixel location to samples of the expected classes. For164

each class c, we take a set of time-series samples Qc =165

{U1,U2, . . . ,Uq}, where U = (u1, . . . , un) is a time series166

with n ≪ m (i.e., the pattern length is much shorter than the167

sensor time series V). q is the number of patterns for each class.168

These samples are then used to classify the intervals of the time169

series V ∈ S .170

The classification is done for each pixel with two steps.171

1) The DTW algorithm is applied for each pattern in Q and172

each time series V ∈ S . This step provides information on how173

patterns match intervals of the time series. 2) The best DTW174

matches are used to build a sequence of land-use and land-cover175

maps.176

A. Step 1: DTW Alignment177

The DTW alignment starts by computing a n×m matrix178

Ψ, whose elements ψi,j are the absolute difference between179

ui ∈ U ∀ i = 1, . . . , n and vj ∈ V ∀ j = 1, . . . ,m. From Ψ,180

we compute an accumulated cost matrix D by a recursive sum181

of the minimal distances, such that182

di,j = ψi,j +min{di−1,j , di−1,j−1, di,j−1} (1)

that is subject to the following boundary conditions:183

di,j =







ψi,j , i = 1, j = 1
∑i

k=1 ψk,j , 1 < i ≤ n, j = 1
∑j

k=1 ψi,k, i = 1, 1 < j ≤ m.

(2)

Fig. (3) shows an example of the accumulated cost matrix184

D. Intuitively, the DTW alignment runs along the “valleys” of185

low cost in the accumulated cost matrix D, that has as many 186

“valleys” as the number of matches between U and V. The 187

kth low-cost path in D produces an alignment between the pat- 188

tern and a subsequence V|bkak
with associated DTW distance δk, 189

where ak is the starting point and bk the ending point of the 190

subsequence k [29], as shown in Fig. (3). 191

Each minimum point in the last line of the accumulated cost 192

matrix, i.e., dn,j ∀ j = 1, . . . ,m, produces an alignment, with 193

bk and the δk given by 194

bk = argmink(dn,j), k = 1, . . . ,K (3)

δk = dn,bk (4)

where K is the number of minimum points in last line of the 195

accumulated cost matrix. 196

A reverse algorithm, (5), maps the warping path Pk = 197

(p1, . . . , pL) along the kth low-cost “valley” in D. The algo- 198

rithm starts in pl=L = (i = n, j = bk) and ends when i = 1, 199

i.e., pl=1 = (i = 1, j = ak), where L denotes the last point of 200

the alignment. The warping path Pk contains the matching 201

points between the time series. Note that the backward step 202

in (5) implies the monotonicity condition [21], [29], i.e., the 203

alignment preserves the order of the time series 204

pl−1 =























(i, ak = j), if i = 1
(i− 1, j), if j = 1
argmin(di−1,j ,

di−1,j−1, otherwise.
di,j−1)

(5)

The original DTW algorithm does not account for the phase 205

difference between two time series [25]. However, land-use and 206

land-cover types have distinct phenological cycles that are rel- 207

evant for space-time classification [26], [27]. We introduce a 208

time-weighted extension of DTW (TWDTW), based on the date 209

of each pixel in the satellite image. This time-weighted ver- 210

sion of DTW adds a temporal cost ω to the cost matrix Ψ, 211

whose elements become ψi,j = |ui − vj |+ ωi,j . To compute 212

the temporal cost we propose both a linear 213

ωi,j = g(ti, tj) (6)

and a logistic model with midpoint β, and steepness α, such 214

that 215

ωi,j =
1

1 + e−α(g(ti,tj)−β)
(7)
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Fig. 4. Open boundary DTW alignment. Dark and light shades represent the

alignments of the patterns U1 and U2, respectively. Indexes ak and bk represent

the starting and ending points of the kth alignment in V associated with a DTW

distance measure δk .

F4:1

F4:2

F4:3

F4:4

where g(ti, tj) is the elapsed time in days between the dates216

ti in the pattern and tj in the time series. We ran many tests217

using different values of β and α. We then used the best global218

accuracy performance to set the parameters for the logistic219

TWDTW.220

B. Step 2: Map Building221

The DTW algorithm matches each pattern to the input time222

series independently from the others. Thus, each interval of the223

time series V can fit different patterns. To associate an inter-224

val of the time series V to a land-cover and land-use class, we225

choose the best fitting pattern, i.e., the pattern with the lowest226

DTW distance in the interval. After finding the best fit, we can227

produce maps that show a land-cover and land-use classification228

for a given period.229

To compare our results with other land-use/cover products,230

we produced maps matching the agricultural calendar from July231

to June (gray area in Fig. 4). We find the pattern that has the232

lowest DTW distance to a subsequence V|bkak
partly contained233

in the crop calendar. Fig. 4 shows the matching of two pat-234

terns, U1 and U2, that are partially in the same agricultural235

year from July 2000 to June 2001. In this case, we pick the one236

with the lowest DTW distance, i.e., the most similar pattern for237

that period.238

III. EXPERIMENTS239

In our experiments, we tested the performance of four differ-240

ent DTW methods: 1) the original DTW algorithm without time241

constraints (i.e., ω = 0); 2) DTW with maximum time delay as242

proposed by [13]; 3) linear TWDTW; and 4) logistic TWDTW.243

We used time series of enhanced vegetation index (EVI) from244

July 2000 to June 2013 based on moderate resolution imaging245

spectroradiometer (MODIS) product MOD13Q1 16 day 250 m.246

MODIS EVI has improved sensitivity in high-biomass regions247

through a canopy background adjustment and a reduction in the248

atmosphere influences [30], [31].249

The EVI time series is subject to atmospheric effects, such250

as cloud cover and path radiance from aerosols [32]. To reduce251

the spurious oscillation due to atmospheric effects, we apply252

a discrete wavelet decomposition [33] and then filter the time253

series by removing the highest wavelet frequency. The wavelet 254

filter preserves the essential temporal variation and is more 255

sensitive to vegetation seasonal changes than filters based on 256

Fourier transform [34]. 257

An important scientific problem to the authors is understand- 258

ing changes in the Brazilian Amazonian rain forest, which has 259

an area of 4 100 000 km2. In Amazonia, 720 000 km2 have been 260

deforested since the 1970s [35]. In the Copenhagen Climate 261

Conference in 2009, Brazil pledged to reduce deforestation 262

in Amazonia by 80% relative to the average of the period 263

1996–2005. Brazil is making good this pledge. Forest cuts 264

in Amazonia fell from 27 700 km2 in 2004 to 4900 km2 in 265

2012, decreasing by 83%. Given the impact of land changes in 266

Amazonia on global biodiversity, emissions, and ecological ser- 267

vices, it is important to understand what causes forest removal 268

[36]. INPE (Brazil’s National Institute for Space Research) and 269

EMBRAPA (Brazils Agricultural Research Agency) mapped 270

the land use of the deforested areas in Amazonia up to 2008 271

[37]. Their results show that 63% of the forest cuts are now 272

used for cattle raising. Cattle ranches in Amazonia use exten- 273

sive practices, with less than 1 head of cattle per hectare. Cash 274

crop agriculture accounts for only 4% of the deforestation. 275

Moreover, more than 20% of the area has been abandoned 276

and is now regrowing as secondary vegetation. To achieve fur- 277

ther gains in reducing deforestation and biodiversity loss, we 278

need to understand the different land-use trajectories, includ- 279

ing the deforestation dynamics, land-use intensification, and 280

land-abandonment pathways. 281

We ran a case study in an area in Amazonia that had strong 282

deforestation and cropland expansion in the last decade. We 283

selected the Porto dos Gaúchos municipality that covers 284

approximately 7000 km2 and is located in the state of Mato 285

Grosso, Brazil, inside of the Amazon Biome. In 2013, its total 286

deforested area was 3023.6 km2, i.e., 42.9% of the original for- 287

est cover [35]. The cropland area grew from 59.8 km2 in 2000 288

to 580.8 km2 in 2013 [38]. We chose the most important classes 289

for that area: forest, secondary vegetation, pasture, single crop- 290

ping, and double cropping. These classes are the most relevant 291

ones for our study on trajectories of change in Amazonia. 292

Our classification method requires a set of temporal patterns 293

of the chosen land-use/cover classes. We defined the temporal 294

patterns of forest, pasture, single cropping, and double crop- 295

ping based on the paper by [39], that presented typical temporal 296

patterns of EVI for different crops types and natural vegeta- 297

tion for the same region of our case study. Reference [39] used 298

several ground truth data collections identified through field 299

studies to derive their averaged EVI signal according to the 300

agricultural calendar from July to June. Here, we joined some of 301

the temporal patterns from [39], such that “soybean” and “cot- 302

ton” are used as “single cropping,” and “soybean–cotton” and 303

“soybean–maize” are “double cropping.” We kept the classes 304

“forest” and “pasture.” Therefore, each class has one or two 305

patterns shown in Fig. 5. 306

IV. RESULTS 307

To assess our algorithm, we used 40 random selected spa- 308

tial locations from that we could classify 489 samples out of 309

560 in the period from 2001 to 2014. Most of the unclassified 310
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Fig. 5. Temporal patterns of EVI MODIS 16 days. Adapted from [39].F5:1

Fig. 6. Linear and logistic time weight. The logistic weight has midpoint β =
100 days and steepness α = 0.1.

F6:1

F6:2

samples had cloud contamination during the growing cycles of311

single and double cropping because the rainy season in Mato312

Grosso state is usually from November to March [40]. The sam-313

ples were classified by visual interpretation of Landsat images314

using the Google Earth Engine [41]. To separate our classes, we315

used a set of images corresponding to the agricultural year from316

July to June. For each year, we used at least four images show-317

ing different phenological stages of the vegetation that allow318

us to distinguish: forest, pasture, single cropping, and double319

cropping.320

The logistic TWDTW had the best performance for α = 0.1321

and β = 100 days (global accuracy 87.32%), meaning a low322

penalty for time warps smaller then 60 days and significant323

costs for bigger time warps (Fig. 6). In the algorithm pro-324

posed by [13], we tested maximum time delays ranging from325

30 to 130 days, and found the best performance when the delay326

was set to 100 days with global accuracy 84.66%. The linear327

TWDTW had global accuracy 81.6% and the DTW without328

time restrictions only 70.14%.329

Part of the good performance of TWDTW comes from good330

quality sample patterns. Given a good set of samples, TWDTW331

uses the length of each pattern as a temporal constraint in its 332

distance measure. The standard version of DTW reduces or 333

enlarges the pattern without temporal restrictions to find the 334

best fit. Unrestricted warping works well for highly variable sig- 335

nals such as speech, but has problems dealing with structured 336

patterns such as land-cover signals. To compare DTW without 337

time constraints and TWDTW, see Fig. 7. In this figure, we 338

show how the best matches for samples patterns of four classes 339

(forest, pasture, single cropping, and double cropping) for the 340

two versions of DTW (with and without time constraints). The 341

DTW without time constraints, Fig. 7(a) overfits the patterns 342

of forest, pasture, and single cropping. The forest and pasture 343

signals are strongly shortened and the single cropping signal 344

is mapped to the first cycle of a double cropping event. By 345

contrast, TWDTW keeps the temporal consistency for all land 346

classes, as shown in Fig. 7(b). 347

Table I shows the accuracy assessment of the four DTW 348

approaches based on 489 reference samples classified from the 349

Landsat images. In general, the logistic TWDTW had higher 350

accuracy than the other approaches. Although the logistic 351

TWDTW had lower user’s accuracy than the linear TWDTW 352

for double cropping and forest, its producer’s accuracy was 353

higher than the linear TWDTW for these classes (cf. Table I). 354

This means that the logistic TWDTW classified more ground 355

truth pixels as such, but with a slightly lower confidence than 356

the linear TWDTW for pixels classified as double cropping and 357

forest. The logistic TWDTW had the same value of sensitivity 358

for double cropping as the maximum delay DTW (i.e., pro- 359

ducer’s accuracy 90.43%), but with larger confidence for this 360

class, user’s accuracy 92.04% in comparison to 88.89%. 361

The confusion matrices of the four DTW approaches are 362

shown in Table II. We see that DTW without time restriction 363

had the worst results, particularly, for double cropping that had 364

57 pixels classified as single cropping. The linear TWDTW 365

classified 24 pixels of double cropping and 34 pixels of pas- 366

ture as single cropping, and therefore, its confidence for single 367

cropping was only 60.27% (cf. Table I). The logistic TWDW 368

classified 10 pixels of double cropping and 18 pixels of pas- 369

ture as single cropping, which means a higher confidence than 370

the linear TWDTW classification for single cropping, 75.00%. 371

These results of the logistic TWDW were similar to the results 372

obtained using the maximum time delay DTW, which classified 373

9 pixels of double cropping and 18 pixels of pasture as single 374

cropping. However, the logistic TWDTW had higher sensitivity 375

than the maximum time delay DTW (84.85% in comparison to 376

75.76% cf. Table I), that classified 11 pixels as double cropping, 377

6 as pasture and unclassified other 7 pixels out of 99 pixels of 378

single cropping. 379

We also compared the accuracy of our classification and 380

the MODIS land cover collection 5, Plant Functional Type 381

(PFT) 500 m [42] using the validation points. Mapping from 382

MODIS classes to our classes is shown in Table III. Originally, 383

the study area was covered by forest. Therefore, the other land- 384

cover types that appear later result from human activities. We 385

aggregated the MODIS categories of trees to a class called 386

forest. We also assume that MODIS shrubland and grassland 387

classes are used as pastureland for cattle raising, and the cate- 388

gories of cereal crops and broad-leaf crops are aggregated to 389
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Fig. 7. Best matches of forest, pasture, single cropping, and double cropping to a sample time series using DTW without time restriction in (a), and the time-

weighted DTW in (b).

F7:1

F7:2

TABLE IT1:1

ACCURACY ASSESSMENT FOR EACH CLASS BASED ON 489 REFERENCE SAMPLES CLASSIFIED FROM THE LANDSAT IMAGEST1:2

a class called cropland. Other MODIS classes are less than390

0.008% of the pixels in this area, and thus they were not391

considered in this paper.392

The accuracy assessment comparing logistic TWDTW393

results and MODIS land cover is shown in Table IV. The394

TWDTW algorithm had a global accuracy of 91.21%, better395

than the global accuracy of MODIS (79.36%). TWDTW had396

higher user’s and producer’s accuracies than the MODIS clas-397

sification for all classes. Although, MODIS had high user accu-398

racy for forest (87.2%) and cropland (89.33%), its producer’s399

accuracy for these classes was low (77.37% and 75.28%,400

respectively).401

We compared our forest area with estimations by the Amazon402

Monitoring Program PRODES [35]. To be able to compare403

results with the pristine forest area that comes from PRODES,404

we need to split our “forest” class into “pristine forest” and405

“secondary vegetation.” This requires a land-cover transition406

rule. Areas matching a forest pattern were classified as forest 407

only if they had also been classified as forest in previous years. 408

Otherwise, we classified them as secondary vegetation. For the 409

first year of the time series, the areas matching a forest pat- 410

tern are classified as forest. There is no secondary vegetation 411

in the first year of our classification. Using this rule, we got 412

a class of “pristine forest” that is comparable to the PRODES 413

dataset. 414

Since it is difficult to distinguish secondary vegetation from 415

primary forest using visual interpretation of Landsat images, we 416

joined these two classes to forest in the accuracy assessment. 417

The total forest (pristine forest) and the secondary vegetation 418

areas are presented in Fig. 8. The forest area estimated using the 419

logistic TWDTW is in line with the area estimated by PRODES 420

[35]. Most of the deforestation occurred before 2005, which 421

was followed by an increase of the secondary vegetation area 422

in 2007. 423
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TABLE IIT2:1

CONFUSION MATRICES BASED ON 489 REFERENCE SAMPLES

CLASSIFIED FROM THE LANDSAT IMAGES

T2:2

T2:3

TABLE IIIT3:1

EQUIVALENT CLASSES FOR COMPARISON BETWEEN THE TWDTW

CLASSIFICATION AND MODIS LAND-COVER COLLECTION 5, PLANT

FUNCTIONAL TYPE (PFT)

T3:2

T3:3

T3:4

TABLE IVT4:1

ASSESSMENT OF MODIS COLLECTION 5 PLANT FUNCTIONAL TYPE

(PFT) AND LOGISTIC TWDTW BASED ON 489 REFERENCE SAMPLES

CLASSIFIED FROM THE LANDSAT IMAGES

T4:2

T4:3

T4:4

The classes forest, pastureland, and cropland were aggregated according to

Table III.

We also compared our estimated cropland area with the424

yearly Municipal Agricultural Production Survey (PAM) from425

2001 to 2013 done by the Brazilian Census Bureau426

(IBGE) [38]. The PAM survey provides the information on427

planted area, harvested area, amount produced, average yield,428

and production value of permanent and temporary crops by429

municipality. Since PAM is a sampling survey and not a com-430

prehensive census, some municipalities, especially those in the431

Brazilian Amazon, can have significant inter-annual variations.432

Fig. 8. Forest area estimated by the Amazon Monitoring Program PRODES

[35] and using the logistic TWDTW-based classification for Porto dos Gaúchos.

F8:1

F8:2

Fig. 9. Total area of double cropping and single cropping in Porto dos Gaúchos

estimated by TWDTW and the Brazilian national cropland survey [38].

F9:1

F9:2

Fig. 10. Total area of pasture, single cropping, and double cropping from 2001

to 2013 estimated using logistic TWDTW for Porto dos Gaúchos.

F10:1

F10:2
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Fig. 11. Land-use/cover maps produced by using the logistic TWDTW classification. Each map shows the classification for an agricultural year (from July to

June) in Porto dos Gaúchos.

F11:1

F11:2

We use the PAM because it is the only survey that is available433

yearly for the period 2000 to 2013. Fig. 9 shows the area of434

single cropping and double cropping estimated by using the435

logistic TWDTW algorithm and the Brazilian national cropland436

survey [38] for Porto dos Gaúchos. There is a general agree-437

ment between our results and the crop surveys, except in the438

years 2009 and 2010.439

The total agricultural areas (pasture, single cropping, and 440

double cropping) are shown in Fig. 10. In the time series, 441

the pasture and single cropping areas were increasing until 442

2006, while the double cropping area has a growing trend 443

during the whole period. In the last 2 years of the time 444

series, the double cropping exceeded the single cropping 445

area. 446



IE
EE

Pr
oo

f

MAUS et al.: A TIME-WEIGHTED DTW METHOD FOR LAND-USE AND LAND-COVER MAPPING 9

Fig. 11 shows the spatial distribution of land use and land447

cover in Porto dos Gaúchos for each second agricultural year448

from 2001 to 2013. In the last decade, a cropland intensification449

has happened in the Eastern part of Porto dos Gaúchos while450

pasture expansion has taken place in the Western part.451

V. DISCUSSION452

Our results show that it pays to have a flexible approach to453

temporal restrictions when using DTW for land-cover and land-454

use classification. The original DTW method disregards the455

temporal range when finding the best alignment between two456

time series. This precludes an accurate land-use and land-cover457

classification. The time constraints included in the TWDTW458

similarity measure should be flexible to handle with the small459

phase changes related to natural phenological variability.460

The maximum time delay, proposed by [13], is flexible for461

small time warps. However, it forces the dynamic algorithm,462

(5), to map the warping path inside of a limiting time win-463

dow that can preclude the classification of some areas (cf.464

unclassified samples in Table II).465

A large cost for small time warps, as the linear TWDTW466

method does, harms the classification and reduces its sen-467

sitivity. The linear TWDTW had low producer’s accuracy,468

respectively, 78.11%, 76.52%, when classifying pasture and469

double cropping (cf. Table I).470

The DTW without time restriction had the worst results.471

More than half of the areas of double cropping were classified472

as single cropping. These errors come from the over warping473

of single cropping to fit the first growing season of the double474

cropping occurrences, cf. Fig. 7(a).475

The logistic TWDTW had better results for these land-use476

classes, because of its low penalty for small time warps and its477

significant costs for large time warps. Its better accuracy derives478

from its flexibility to find the best match between a pattern and479

an interval within a long-term time series.480

When comparing our cropland estimated area with data from481

the yearly Municipal Agricultural survey [38], our results gen-482

erally match, except for 2009 and 2010 (Fig. 9). In the PAM, the483

large variations between 2008 and 2009 and between 2010 and484

2011 are difficult to explain. Since this is a region of large-scale485

crop production, one would not expect such a large variation.486

This fact indicates that remote sensing time-series analysis can487

complement and add value to cropland surveys such as PAM.488

The forest area estimated using the logistic TWDTW was489

similar to the forest area from the INPE’s Amazon Monitoring490

system (PRODES) (Fig. 8). However, our algorithm had higher491

estimates for the forest area until 2006 and lower estimates for492

subsequent years. The higher forest area estimated by the logis-493

tic TWDTW compared to PRODES in the first years of the494

time series is likely related to their different scale of analysis.495

While we used MODIS images with 250-m spatial resolution496

the PRODES project uses 30-m Landsat images. Therefore,497

PRODES is capable of detecting deforestation in small areas498

that may not be detected at the MODIS resolution.499

In the second part of the graphic in Fig. 8, the lower forest500

area estimated by our method was caused by the transition rule501

used in our algorithm to separate the secondary vegetation from502

Fig. 12. Example of a classification using the transition rules. This is a sample

time series inside of a burned area. This area was degraded in 2011 according

to the Detection of Forest Degradation Program (DEGRAD) [43].

F12:1

F12:2

F12:3

the forest. Applying this rule, an area that changes from forest to 503

any other land class cannot become forest again. For example, 504

after a degradation event (e.g., by fire), the area is classified as 505

secondary vegetation in our algorithm, cf. Fig. 12. Therefore, 506

our estimation reduces from the forest area both deforested and 507

degraded areas, whereas PRODES reduces from the forest area 508

only the deforestation by clear-cutting, i.e., it reduces the forest 509

area only when most or all the trees are uniformly removed. 510

One current challenge for large-scale application of 511

TWDTW algorithm is its computational time. The implemen- 512

tation of the TWDTW algorithm was developed in R [44], 513

[45] using the package dtw [46]. Our case study in Porto 514

dos Gaúchos has 130 500 time series, each with 300 points. 515

The computation time was around 50 min for all DTW vari- 516

ations on a server using 40 cores with 2.6-GHz clock and 517

256-GB memory. We expect that recent developments on spe- 518

cialized software such as array databases [47], coupled with 519

hardware advances, and better indexing strategies will improve 520

performance considerably. 521

VI. CONCLUSION 522

This paper presents a version of the DTW algorithm suitable 523

for land-use and land-cover classification of remote sensing 524

time series. Refinements to standard DTW include a temporal 525

restriction that allows for phase-shifts due to seasonal changes 526

of natural and cultivated vegetation types. In a tropical forest 527

area, the method has a high accuracy for mapping classes of 528

single cropping, double cropping, forest, and pasture. 529

Accuracy assessments show the method compares favorably 530

to other DTW variations for land classification. The logistic 531

TWDTW had better results than the other tested alternatives 532

with a global accuracy of 87.32%. Our classification using the 533

logistic TWDTW has higher accuracy and spatial resolution 534

than the MODIS land-cover product. Forest and cropland areas 535

are in line with the Amazon Monitoring Program PRODES 536

and with the Brazilian national cropland surveys, respectively. 537

These results highlight the potential of the TWDTW to improve 538

land-use and land-cover products and contribute to agricultural 539

statistics. 540

We expect that the TWDTW algorithm will be successful 541

for large-scale land-cover classification of remote sensing time 542

series, if some conditions are met. If the spatial and temporal 543

resolutions of the data are adequate to capture the properties 544
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of the landscape, and the samples express the temporal varia-545

tions of the land-cover types, TWDTW has many advantages.546

Its flexibility for warping a temporal signature is useful to547

account for natural and cultivated vegetation types even with548

inter-annual climatic and seasonal variability.549

The proposed method is pixel-based. We envisage future ver-550

sions that include local neighborhoods to reduce border effects551

and improve classification homogeneity. Given that the DTW552

algorithm produces a distance measure between each interval553

of a long-term time series and all the temporal patterns, these554

measures could be used as a prior probability estimation for a555

Bayesian postclassification produce that borrows information556

from the neighbors.557

Postprocessing rules can improve TDWTW results. In this558

paper, we show how to use rules to distinguish pristine forest559

from forest regrowth. Using appropriate rules, it is also possible560

to apply the method for forest degradation, real-time change561

detection, and crop-condition assessments.562

The results in this paper have been obtained using only the563

EVI time-series signal. We expect further improvements using564

multiband time series, including the original spectral bands and565

transformed ones such as NDVI, EVI, and spectral unmixed566

endmembers.567

The TWDTW algorithm is suitable for applications of remote568

sensing time series where the temporal variation is more impor-569

tant than the spatial variation for classifying remote sensing570

datasets. These cases include areas of large farms, such as those571

found in Brazil. For urban areas with less seasonal change or572

areas with small farms, it is likely that time warping meth-573

ods need to be combined with object-based image analysis for574

accurate classification of the landscape.575
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