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Abstract. With the amount of multitemporal and multiresolution images grow-
ing exponentially, the number of image segmentation applications is recently
increasing and, simultaneously, new challenges arise. Hence, there is a need to
explore new segmentation concepts and techniques that make use of the tempo-
ral dimension. This paper describes a spatio-temporal segmentation that adapts
the traditional region growing technique to detect homogeneous regions in space
and time in optical remote sensing images. Tests were conducted by consider-
ing the Dynamic Time Warping measure as the homogeneity criterion. Study
cases on high temporal resolution for sequences of MODIS and Landsat-8 OLI
vegetation indices products provided satisfactory outputs and demonstrated the
potential of the spatio-temporal segmentation method.

1. Introduction
Satellite image analysis is a key role for detecting land use/cover changes in different
biomes. The extensive amount of remote sensing data, combined with information from
ecosystem models, offers a good opportunity for predicting and understanding the be-
haviour of terrestrial ecosystems [Boriah 2010]. As satellite products have a repetitive
data acquisition and its digital format is suitable for computer processing, remote sensing
data have become the main source for application of change detection and observation of
land use and land cover during the last decades [Lambin and Linderman 2006].

If the image analysis is performed using only per-pixel techniques, inherent
information of the objects in the scene are discarded, such as shape, area and sta-
tistical parameters. In order to exploit these information, there are segmentation al-
gorithms, which partition images in regions whose pixels present similar properties
[Blaschke 2010, Bins et al. 1996]. Using a homogeneity criterion between the image pix-
els, the identified regions are treated as objects from which characteristics can be extracted
to be used in the analysis. Consequently, the result of the segmentation reduces the vol-
ume of data to be studied in the analysis, regarding the number of elements to be analysed.

Several segmentation techniques applied in change detection are still derived
from the traditional snapshot model [Dey et al. 2010], that analyses each time step in-
dependently. However, a thorough literature review revealed a record of few stud-
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ies that adapted methods based on objects for applications with multitemporal data
[Thompson and Lees 2014].

Change detection based on time series is advantageous compared to the pure ob-
servation of image sequences, since the series takes into account information regarding
temporal dynamics and changes in the landscape rather than just observing the differences
between two or more images collected on different dates [Boriah 2010]. Continuous ob-
servations from remote sensors provide high temporal and spatial resolution imagery, and
better remote sensing image segmentation techniques are mandatory for efficient analysis
[Schiewe 2002, Dey et al. 2010]. Nonetheless, a large amount of temporal data has been
generated over the past years, which forces the remote sensing community to rethink pro-
cessing strategies for satellite time series analysis and visualization [Freitas et al. 2011].

In this paper, we describe a segmentation method applied to time series of Earth
Observation data. The method integrates regions in order to detect objects that are ho-
mogeneous in space and time. This approach aims to overcome the limitations of the
snapshot model, adapting the well known segmentation method based on spatial region
growing [Adams and Bischof 1994]. Study cases were conducted using time series of
MODIS and Landsat-8 OLI scenes by applying spatio-temporal segmentation using the
Dynamic Time Warping measure [Sakoe and Chiba 1971] as the homogeneity criterion.

2. Remote Sensing Image Segmentation

One of the first steps in every remote sensing image analysis, segmentation is a ba-
sic and critical task in image processing whereby the image is partitioned into re-
gions, also called objects, whose pixels are similar considering one or more properties
[Haralick and Shapiro 1985]. Overall, it is expected that the objects of interest are au-
tomatically extracted as a result of segmentation. Features can be extracted from these
objects and used later for data analysis.

However, segmentation algorithms generally do not yield a perfect partition of the
scene, producing segments that divide the targets of interest into several regions (over-
segmentation) or generate regions containing more than one target (under-segmentation).
By applying segmentation methods for remote sensing data, both of the aforementioned
results may happen within a single scene, depending on the heterogeneity of the objects
that are taken into account [Schiewe 2002]. In addition, many segmentation algorithms
are directed to a reduced class of problems or data. Errors and distortions in the segmen-
tation process are reflected in the subsequent steps, including classification.

The region growing algorithm [Adams and Bischof 1994] is one of the most ap-
plied segmentation techniques in remote sensing image processing. The method groups
pixels or sub-regions into larger regions depending on how they are similar or not, using
some similarity criteria. The technique starts with a set of pixels called seeds and, from
them, grows regions by adding neighbour pixels with similar properties.

The threshold definitions in region growing segmentation are a key step due to
their direct influence on the accuracy of the output. The similarity threshold analyses
if the pixel value difference or the average difference of a set of neighbouring pixels is
smaller than a given threshold. This value supports the user to control the segmentation
result in an interactive way, depending on the goal and study area [Oliveira 2002].
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Furthermore, it is reported that there is not an optimal threshold value, since it
depends on the image type, land cover, the period in which the data was collected and
research purposes. In general, the threshold is reached after several tests among possible
combinations of the algorithm. The tests continue until the result of the segmentation is
suitable for a particular purpose [Oliveira 2002].

Many of the recent segmentation processes based on objects have paid atten-
tion to high image spatial resolutions whereas, so far, there are few studies adapted
to multitemporal data [Thompson and Lees 2014]. Most of the change detection
analysis uses the well-known snapshot model [Haralick and Shapiro 1985], observing
only the differences between discrete dates [Dey et al. 2010, De Chant and Kelly 2009,
Duro et al. 2013, Gómez et al. 2011]. Additionally, most of the object-based multitem-
poral analysis performs inferences about the nature of the changes after the image pro-
cessing, that is, the understanding of the phenomenon changes is inferred by measuring
the number and the magnitude of the observed differences in the objects after the change.

Some object-based techniques aim at performing the segmentation generating
one output for each instant of time and then comparing the objects changes over time
[Im et al. 2008, Niemeyer et al. 2008, Gómez et al. 2011]. In other studies, the objects
are defined in the first image, and then their differences are analysed in subsequent image
[Blaschke 2005, Pape and Franklin 2008, Duro et al. 2013].

Another approach has included the time as an additional factor within the segmen-
tation, being used with the spatial and spectral image features [Thompson and Lees 2014].
However, many studies that applies this segmentation approach have used a lim-
ited number of multitemporal images [Bontemps et al. 2008, Desclée et al. 2006,
Drăguţ et al. 2010, Drăguţ et al. 2014] and they did not make use of time series of
high temporal resolution images [Dey et al. 2010]. A direct characterization of changes
in a phenomenon requires that the observations are done during the change process
[Thompson and Lees 2014], which can be exploited through high temporal resolution im-
ages.

3. Satellite Image Time Series
Satellite image time series (SITS) offer new perspectives for the understanding of ocean,
land and atmospheric changes by identifying the factors that cause these modifications
and predicting future changes [Boriah 2010]. The time component integrated with spatial
and spectral properties of the images can result in a rich source of information that, if
properly explored, reveals complex and important patterns found on the environment,
including the land and ocean dynamics [Bruzzone et al. 2003].

SITS are relevant data in the study of dynamic phenomena and the interpretation
of their evolution over time [Boulila et al. 2011]. The time series of vegetation indices,
for example, can be used to analyse seasonality for cover monitoring purposes. Vegetation
indices represent improved measures of spatial, spectral and radiometric surface vegeta-
tion conditions [Tucker et al. 2005]. In the analysis and characterization of vegetation
cover, for example, vegetation indices are used for seasonal and inter-annual monitor-
ing of biophysical, phenological and structural vegetation parameters [Huete et al. 2002].
Fig. 1 shows the time series generation for a pixel p(x, y). For each pixel, a time series
can be observed, representing the pixel value variation over time.
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Figure 1. Example of a time series for the pixel p(x, y).

One of most used vegetation indices is the NDVI (Normalized Difference Veg-
etation Index) [Justice et al. 2002] and its calculation is based on the reflectance of red
and near-infrared wavelengths [Tucker 1979]. The band ratio in the calculation of NDVI
reduces some forms of noise, such as the lighting differences, cloud shadows and to-
pographical variations. However, this index has low sensitivity in regions with high
concentration of biomass and may have limitations related to soil brightness variations
[Jiang et al. 2008].

3.1. Dynamic Time Warping

Dynamic Time Warping (DTW) is one of the most used measures to quantify the similar-
ity between two time series [Petitjean et al. 2012]. Originally designed to treat automatic
speech recognition [Sakoe and Chiba 1971, Sakoe and Chiba 1978], DTW measures the
optimal global alignment between two time series and exploits temporal distortions be-
tween them.

The choice for a good similarity measure plays a key role since it defines the
way to treat the temporality of data. The main change detection analysis in remote
sensing images consists in comparing the data to estimate the similarity between them
[Petitjean et al. 2011]. In many cases, the similarity is computed using a distance mea-
sure between two instances.

Among the known distances, DTW has the ability to realign two time series, so
that each element of the first series is associated with at least one of the second series.
With DTW, two time series out of phase can be aligned in a nonlinear form (Fig. 2). Pro-
viding the cost of this alignment, DTW highlights similarities that the Euclidean distance
is not able to capture, comparing shifted or distorted time series [Petitjean et al. 2011].

Figure 2. Although the two series have similar shapes, they are not aligned in
the time axis. DTW nonlinear alignment allows a more intuitive distance to be
calculated. Source: Adapted from [Chu et al. 2002].
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Let A and B be two time series of length M and N , respectively, where A =

ha1, a2, · · · , aMi and B = hb1, b2, · · · , bNi. The first step for calculating the DTW mea-
sure between A and B is to build a matrix of size M ⇥ N , where each matrix element
(i, j) corresponds to a distance measured between a
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Matrix elements are calculated from left to right and from bottom to top. The
algorithm adds the distance value � of the elements in that position of each series. The
elements receive the lowest value from the previous adjacent elements to the left, down
and diagonal. Once the matrix is completely filled, the last element at bottom right gives
the value of the best alignment of the two time series.

DTW measure has been the subject of studies for analysis of SITS. Some re-
searches, for example, used DTW as a tool to treat problems related to comparing time se-
ries of different sizes and irregular samples containing cloud cover [Petitjean et al. 2011,
Petitjean et al. 2012]. Another study presented a weighted version of DTW for land cover
and land use classification [Maus et al. 2016].

4. Methodology

The proposed spatio-temporal segmentation by region growing is diagrammed in Fig. 3.
The algorithm can be expressed by the following steps:

1. Select a sequence of images as input data.
2. Determine the number and location of the seeds at the image.
3. Compute DTW distance between the time series of the seeds and their neighbors.

The similar neighbors are added to the region.
4. Continue examining all the neighbors until no similar neighbor is found. Label

the obtained segmented as a complete region.
5. Observe the next unlabelled seed and repeat the process until all the seeds or pixels

are labelled in a region.

The core of our methodology is to use DTW measure as the homogeneity criterion for
growing regions in the study cases. These time series were used in DTW calculation
between the seeds and its neighbouring pixels. The segmentation algorithm was written
using R language.

For the acceptance or rejection of a given threshold in a remote sensing image
segmentation result, the resulting segments were compared with a remote sensing image
at the same location of the scene in the end of the time series. The similarity threshold was
reached using the same seed set in all tests. The segmentation result can also be compared
visually with a reference map, previously set by photo-interpretation.
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Figure 3. Flowchart of the proposed methodology.

5. Results and Discussion
Our technique was used to evaluate two central-western areas in Brazil. The first test
was conducted using NDVI MODIS scenes, with spatial resolution of 250 m. The study
area is located in the state of Mato Grosso (MT) and covers 250,000 km2, illustrated
in Fig. 4. We used 92 NDVI scenes between January 2010 and December 2013, with
temporal resolution of 16 days. The NDVI produced by MODIS images were retrieved
from atmosphere-corrected bidirectional surface reflectance.

This test aimed to illustrate the utility of the method for large areas. The area con-
tains regions of large croplands and native vegetation areas. Since the spatial resolution
of the images is low, the expected segmentation output includes large segmented areas
with similar geo-objects presenting homogeneity over time. The similarity threshold was
defined empirically, based on visual inspection of the results. For the segmentation result
presented in Fig. 5, the similarity threshold was set to 0.05. The processing time was
approximately 4 hours.

Evaluating the result of an image segmentation is difficult because currently no
standard assessment techniques exist [Eeckhaut et al. 2012]. For this test, we compared
the segmentation result to a Landsat-8 image, evaluating the output based on photo-
interpretation of the satellite image. As shown in Fig. 5, the segmentation distinguished
regions corresponding to native vegetation, croplands and urban areas. Visually, the im-
age objects represented similar-sized groups of geo-objects, such as trees, residential areas
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Figure 4. Study area for the first test. Landsat-8 (R4G3B2) imagery of the study
area.

Figure 5. Segmentation output (red outlines) for the first test. The segments are
superimposed on a Landsat-8 image (R4G3B2). The zoomed area shows that the
algorithm distinguished native vegetation, croplands and urban areas.

and agricultural fields.

In the second test, the study area covers a central area in the state of Goiás, located
in Santo Antônio de Goiás City, illustrated in Fig. 6. A sequence of 44 images obtained
from NDVI Landsat-8 OLI between November 12, 2014 and September 30, 2016 were
used, with temporal resolution of 16 days. All images have a dimension of 189 ⇥ 161

pixels, with spatial resolution of 30 m.

In this test, we used 10 reference polygons as ground truth provided by Brazil-
ian Agricultural Research Corporation (EMBRAPA) [Brazil 2011]. This subset of 10
polygons were chosen because they were regions with homogeneous properties in the de-
scribed period, also according to information provided by EMBRAPA (see Table 1). The
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similarity threshold was chosen so that the agricultural, pasture and forest areas could be
separated from the other neighboring targets.

Figure 6. Study area for the second test using Landsat-8 OLI scenes. The yellow
outlines are polygons provided by EMBRAPA. The labelled polygons (A1, A2, A3,
A4, P1, P2, P3, P4, P5 and F1) were used as ground truth.

Table 1. Land use description of each labelled polygon for each harvest/winter.
Label Harvest (2014/2015) Winter (2015) Harvest (2015/2016) Winter (2016)

P1 pasture pasture pasture pasture
P2 pasture pasture pasture pasture
P3 soybean fallow rice fallow
P4 rice fallow maize + brachiaria pasture
P5 pasture pasture soybean fallow
A1 maize + brachiaria pasture soybean fallow
A2 rice fallow maize + brachiaria fallow
A3 soybean fallow rice pasture
A4 pasture pasture soybean fallow
F1 forest forest forest forest

Also in this experiment, the similarity threshold was defined empirically, in this
case set to 0.045. The processing time was 183 seconds. The segmentation result is shown
in Fig. 7. Visually, the proposed method was able to create similar-shaped segments
compared to the reference polygons. To evaluate this result, the segmented regions were
visually compared to reference polygons.

Visually, the segmented polygons represented regions of similar size to the refer-
ence polygons P3, P4, P5, and F1. However, the segmented polygon that corresponds to
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P1 presented similar behavior to its neighboring polygon during the two analyzed years.
The algorithm considered the two polygons as a single area with homogeneous properties
in the observed period. A similar case occurred with polygons A1 and A4. As can be
seen in Table 1, the two areas have the same type of land use, differing only in the har-
vest (2014/2015). The method considered the two areas as a single region. However, the
references A2 and A3 were the ones that most diverged from the algorithm result, since
each one of them were separated into two distinct regions.

Figure 7. Imagery provided by Google Satellite (left) superimposed with segmen-
tation results (blue outlines). Zoomed area (right) containing the labelled refer-
ence polygons (yellow outlines) and the segmented polygons (blue outlines).

Both tests are encouraging and demonstrate the potential of the proposed spatio-
temporal segmentation in dealing with time series generated by images of different sen-
sors and spatial resolutions. However, one factor that reduces the quality of the segments
is the noise in the time series derived from cloud cover, especially in the second test with
Landsat-8 OLI scenes.

Once the proposed method is based on region growing technique, the algorithm
contains some disadvantages. Different seed sets, for example, cause different results in
segmentation. In addition, there is the dependence of processing order of the seeds, which
is particularly noticeable when the regions are small or have some similar properties. In
addition, DTW calculation demands a high computational cost.

6. Conclusion
In this paper, we proposed a multitemporal methodology for segmentation of SITS. The
use of efficient segmentation algorithms represents an important role because they pro-
vide homogeneous regions in space-time and hence simplify the data set. In addition, the
spatio-temporal segmentation brings a new way of interpreting data by means of analysing
contiguous regions in time. In order to illustrate the potential of the method, we presented
two tests on NDVI time series derived from MODIS and Landsat-8 OLI sensors. We com-
pared the segments generated by the proposed algorithm based on photo-interpretation,
observing similarities between the segmentation results and reference polygons.

However, the DTW computation and the use of the temporal dimension increases
the complexity of processing compared with the segmentation of satellite images which
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considers only a single date. Further analysis are needed to apply this approach in regions
with higher temporal resolutions and to test different indices and spatial resolutions of
Landsat-like image time series.
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