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Abstract. The most widely used change detection method is to classify remote
sensing images independently for each date, and stack them to form a class
sequence vector. However, impossible transitions within the sequences might
occur and errors might be accumulated. To solve this, we propose a novel al-
gorithm called Compound Maximum Likelihood (CML), based on the Maximum
Likelihood classifier (ML). In CML information from all images is used jointly
by considering the a priori probability of each class sequence. The algorithm
was tested for Synthetic Aperture Radar and optical images classification in a
study area in Pará state, within the Brazilian Amazon. CML presented either
similar or very improved accuracy index values over ML land cover classifica-
tions.

Resumo. O método de detecção de mudanças mais comumumente utilizado
é comparar imagens classificadas independentemente para obter vetores de
sequências de classes no tempo. No entanto, transições impossı́veis podem ser
classificadas e erros são acumulados. Para solucionar esses problemas, propõe-
se o algoritmo de Máxima Verossimilhança Composta (MVC), como uma ex-
tensão do classificador de Máxima Verossimilhança (MaxVer). No MVC, todas
as imagens são usadas em conjunto, dada a probabilidade a priori de cada
sequência de classes. Testou-se o MVC para classificar imagens ópticas e de
Radar de Abertura Sintética de uma área do estado do Pará, na Amazônia. O
MVC apresentou resultados ou similares ou consideravelmente melhores que
MaxVer.

1. Introduction
The understanding of ecosystems functioning over time and the effects of natural phe-
nomena and human activities over the environment require information about the dy-
namics of Land Use and Land Cover (LULC). This information is usually obtained by
change detection, defined as the process of identifying differences in the state of an ob-
ject or phenomenon at distinct times [Singh 1989]. A common input data for change
detection in environmental studies is remote sensing data. Different change detection
methods have been proposed over time and organized in various ways [Lu et al. 2004,
Kennedy et al. 2009, Tewkesbury et al. 2015, Blaschke 2005]. Among those, we can cite
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four categories:‘layer arithmetic’, ‘post-classification comparison’, ‘direct classification’
and ‘hybrid methods’.

Layer arithmetic refers to methods that calculate change indicators directly over
pixel values or derived features of two or more images. The changes themselves are
usually detected if the indicator values are lower or higher than a given threshold
[Lu et al. 2004]. These methods are usually easy to implement and previous knowledge
of land cover and changes are practically unnecessary. However, the use of data from the
same sensor and different dates may require careful calibration. The use of different sen-
sors within this method is still incipient [Chatelain et al. 2008, Prendes 2015], and only
possible if some feature depicting common characteristics of targets can be calculated.
Layer arithmetic also usually provides only binary (change and no-change) maps. Ac-
cording to [Lu et al. 2004], adequate studies in change detection should provide, besides
the occurrence or not of a change, information about change area, rate, spatial distribution
and type (from some LULC class to another). Therefore, other change detection methods
are often necessary.

Post classification comparison is the direct comparison of separately classified
images. According to Tewkesbury et al. (2015), this is “one of the most established
and widely used change detection methods”. This method has some clear advantages
over layer arithmetic. Firstly, differences among data are automatically diminished, since
each image is classified separately, so radiometric transformation/calibration is usually
not necessary. It also provides a complete matrix of change information (from-to), while
only the a priori knowledge about land cover is previously necessary. Nonetheless, this
method is often criticized because the final change map depends on the quality of indi-
vidual classified images [Lu et al. 2004, Tewkesbury et al. 2015, Fuller et al. 2003] and it
is not possible to measure changes occurring in a lower scale than the combined errors
of the individual maps [Fuller et al. 2003]. Additionally, it is possible to map changes
that could never happen in the field, because of errors in the individual classified images
[Anjos et al. 2015, Reis et al. 2017].

Direct classification consists in classifying a multi-temporal set of images directly
into multi-temporal classes. Like post classification comparison methods, radiometric
calibration is usually not necessary and multi-sensor data can be used. Change detection
by direct classification can be done using supervised or unsupervised classification algo-
rithms [Tewkesbury et al. 2015]. Since the use of unsupervised algorithms seems to offer
very complex results, it may be interesting to focus on the use of supervised algorithms
instead, for which labeled samples of classes are needed. In change detection cases, these
samples must be collected over a set of multi-temporal images. On one hand, the analyst is
able to set which changes he wishes to detect, so that unimportant or impossible changes
would not be mapped [Anjos et al. 2015]. On the other hand, the types of changes must
be identified a priori and it is considerably more difficult to collect samples of change
classes than those of land cover classes. Additionally, unidentified types of change that
occurred in the set of images would be incorrectly identified, or not mapped as changes
at all.

Lastly, hybrid methods are those in which two or more types of change detection
methods previously described are used together. The clear advantage of this methods is
that change detection can be improved. At the same time, it may be time consuming and
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the appointed problems of other methods have the potential to persist.

Using post classification comparison based methods, it is possible to derive a class
sequence for an object in time from the classification of this object at each time. Similarly,
if labeled samples are collected over the class sequences, it is possible to derive the classi-
fication of each time from change maps generated using direct classification approaches.
However, given the limitations of each methodology, derived land cover or change maps
could present accuracy problems. Based on these two change detection methodologies,
this work presents a novel algorithm named Compound Maximum Likelihood (CML), de-
rived from the widely known Maximum Likelihood (ML) classifier. CML was conceived
to jointly classify two or more images from the same area and it is based on the fact that
knowledge of land cover dynamics in a given study area and time interval can be used to
both refine time-series classifications and to restrict impossible or improbable land cover
transitions [Gómez et al. 2016]. The proposed algorithm is described in Section 2. The
data and methodology employed for a case study in Tapajós region, within the Brazilian
Amazon, is presented in Section 3. Two uses of CML were presented: 1) CML was used
to improve both change detection and land cover classification; 2) CML was adapted to
use multi-sensor information jointly, to classify the land cover of only one date. Classifi-
cation results are presented and analyzed in Section 4. Conclusion and considerations for
future work are drawn in Section 5.
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Observe that the rule expressed in equations (3) and (4) would return the same
sequence as concatenating the Maximum Likelihood classifications in each point of time
if the presence of the a priori probability of a particular sequence is inconsequential. The
expression (4), excluding the a priori term, is called compound likelihood.

3. Methodology
To test the proposed algorithm, we selected an area of approximately 412 km2 in Bel-
terra, Pará state, within the Brazilian Amazon, as illustrated in Figure 1. It is a relatively
plane area of humid tropical climate [IBAMA 2004]. Originally, the region presents dense
forest vegetation, in which woody lianas, palms and epiphytes are found. Due to the oc-
cupation process, the study area also presents patches of secondary vegetation, pasture
and agriculture within the forest matrix. Through field work and remote sensing data,
groups of classes were identified in the study area for three analyzed dates, as described
in Table 1.

Figure 1. Study area

Two types of analysis were conducted in this work. In both of them, we consid-
ered CML applied for per pixel classification of two or more images. The first analysis
aims to detect and typify changes in land cover occurred over three different dates (2008,
2010 and 2013), based on the classification of three remote sensing images. These are:
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one Advanced Land Observing System (ALOS)/Phase Array L-Band Synthetic Aperture
Radar sensor (PALSAR) image from June 15th 2008, acquired in Fine Beam Dual (FBD)
mode, 1.1 processing level; one LANDSAT5/Thematic Mapper (TM) image from June
29th 2010 and one Earth Observer 1 (EO-1)/ Advanced Land Imager (ALI) image from
October 05th 2013.

Table 1. Land cover classes and legends definitions for each analyzed date.
2008/2010a 2013 2010b Class name Description

AG
BS BS Bare Ag. Soil Agricultural areas presenting bare soil.
IA IA Idle Ag. Area Fallow annual agriculture areas.
CA CA Cultivated Area Cultivated crops

PA PA CP Clean Pasture Pasture areas with less than 15% of invasive plants.
OP Overgrown Pasture Pasture areas with more than 15% of invasive plants.

ISV SV1 SV1 Initial S.V. Secondary vegetation formed by herbaceous vegetation and shrubs.
SV2 SV2 Intermediate S.V. Secondary vegetation composed mainly by shrubs and small trees.

F
SV3 SV3 Advanced S.V. Secondary vegetation formed mainly by trees.
MF MF Modified Forest Forested areas modified by logging and/or fire.
MA MA Mature Forest Climax forests, with small to no evidence of alteration.

Note:AG = Agriculture, PA = Pasture, ISV = Initial stages of secondary vegetation, F = developed forests.

On the second analysis, it is shown how to use CML to classify two images from
different sensors and approximately the same date for land cover classification, provided
they meet the initial hypothesis of CML derivation. The same LANDSAT5/TM image
from June 29th 2010 was used, along a ALOS/PALSAR FBD 1.1 image from June 21th

2010. Radar images are independent from optical images, even if they are close in time.
This experiment can be thought of jointly classifying contemporaneous optical and radar
imagery without stack layering or executing a fusion process. Additionally, different set
of classes can be used for optical and radar in this context, which is not applicable in layer
stacking or data fusion.

All images were orthorrectified, projected to UTM (fuse 21S) WGS84 and resam-
pled to 15 m of pixel size, in order to enable comparisons. Additionally, ALOS/PALSAR
images were speckle filtered using the Stochastic Distances Nonlocal Means filter
[Torres et al. 2014] with the parameters: filtering window equal to 5x5 pixels, patch equal
to 3x3 pixels and confidence level equal to 90%. For LANDSAT5/TM and EO-1/ALI
images, feature selection processes were executed, based on the Jeffries-Matusita (JM)
distance [Schowengerdt 2006] between the pairs of classes from their respective legends.
The selected bands for each data, as well as the main characteristics of each image and
the respective legends utilized are presented in Table 2. For each image, one land cover
legend was adopted and labeled samples were collected. These are presented in Figure 2.

These images were classified using both the traditional ML classifier and the pro-
posed CML. Figure 3 shows the general methodology for CML classification. In this
figure, data and processes regarding time 1 are detached from the other times, for clarity
purposes. Training for the classifier in each input data is done separately as a standard
ML classifier. The classes and reference sets for each site does not need to be the same
for all input data. The definition of a priori probabilities for class sequences develops
the relation among meaningful classes for each image. All classifications are done at the
same time by the CML classifier. Note that if the a priori probability of sequences is not
set, this methodology would return the same results as ML classifier.
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Table 2. Remote sensing images characteristics.
ALOS/PALSAR LANDSAT5/TM EO-1/ALI

Type of sensor Synthetic Aperture Radar Optical Optical
Channels L band (23 cm): 7 spectral bands 9 spectral bands

polarizations HH and HV
Acquisition date June 15 2008 June 29 2010 October 05 2013

June 21 2010
Spatial resolution 10 m in range, 30 m 30 m 1

4.5 m in azimuth
Channels selected Filtered HH 2(0,52-0,60 µm) 4’(0.84-0.89 µm),
for classification and HV polarizations 4(0.76-0.90 µm) and 5’(1,2-1.3 µm) and

5(1.55-1.75 µm) 7(2.08-2.35 µm)
1 With exception of panchromatic band, which has 10 m of nominal spatial resolution.

Figure 2. Labeled samples for each legend and date, presented over a band
from the respective image: polarization HV from ALOS/PALSAR image (2008),
band 5 from LANDSAT5/TM image (2010) and band 7 from EO-1/ALI image (2013).
Legend 2010a results from the grouping of legend 2010b.

Exclusively for the case in which different data for 2010 is used jointly, we also
classified an image obtained by the fusion of LANDSAT5/TM and ALOS/PALSAR im-
ages (both from 2010), for comparison purposes. Selective Principal Components (SPC-
SAR) fusion method was selected because it presented better results than using these
images separately, stacked or fused by other methods, considering the same study area
and similar land cover classes [Pereira 2012]. This step was done so we could further
analyze the vantages and disadvantages of using the information of both images jointly.

The definition of the a priori probability of class sequences was done differently
for each analysis. For the first studied case, in which images from 2008, 2010 and 2013
were classified, we defined which transitions could be acquired between 2008 and 2010
and between 2010 and 2013, by tabulating the legends. These transitions were firstly clas-
sified in two classes: possible (something that can actually happen in the study area, like
a forested class being converted to an agricultural class) and impossible (something that
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could never happen given the time interval and study area, like a deforested area com-
pletely regenerating in only three years). We then weighted these transitions to reflect
what we believe is the potential of each transition happening. Weights vary among 0.0
(impossible), 0.3 (possible but not expected in the study area and time interval), 0.5 (possi-
ble in specific conditions), 0.7 (transitions that are possible if classes are near transitional
states in succession processes) and 1.0 (expected transitions), as presented in Table 3.
Both analysis were based on the transitions proposed by Reis et al. (2017). The possibil-
ity of transitions from 2008-2010-2013 was calculated by the product of 2008-2010 and
2010-2013 weights. We used the a priori probability of class sequences in both the binary
(0 for impossible classes and 1 for all the possibles ones) and weighted way.

For the second study case, in which two images from 2010 are classified, we
considered that a given pixel in a image must be classified as corresponding classes in
both images. Therefore, the transitions between correspondent classes (formed by the
same detailed classes) received a weight equal to 1, while the others received a weight 0.

Classified images were evaluated by the comparison of confusion matrices and
Kappa index values. For each class in an used legend, 100 labeled samples were ran-
domly selected and used to calculate a confusion matrix between reference samples and
a classified image, from which the value of Kappa index was calculated. This process
was repeated 1000 times for each classified image. The mean Kappa index values and the
mean confusion matrix were then analyzed.

Figure 3. General methodology for Compound Maximum Likelihood classifica-
tion. Thicker connection lines indicate a high number of outputs.
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Table 3. Weights for 2008-2010 and 2010-2013 transitions. For binary case, the
weight is 1.0 for each value different than 0.0.

2010
BS IA CA CP OP SV1 SV2 SV3 MF MA

20
08

AG 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
PA 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
ISV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.0 0.0

F 1.0 1.0 1.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0
2013

SE AP CA PL+PS VS1 VS2 VS3 FD FP
20
10

SE 1.0 1.0 1.0 1.0 0.7 0.0 0.0 0.0 0.0
AP 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
AC 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
PL 1.0 1.0 1.0 1.0 0.7 0.0 0.0 0.0 0.0
PS 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0

VS1 1.0 1.0 1.0 1.0 1.0 0.7 0.0 0.0 0.0
VS2 1.0 1.0 1.0 1.0 0.5 1.0 0.7 0.0 0.0
VS3 1.0 1.0 1.0 1.0 0.5 0.0 1.0 0.0 0.0
FD 1.0 1.0 1.0 1.0 0.5 0.0 0.0 1.0 0.0
FP 1.0 1.0 1.0 1.0 0.5 0.0 0.0 0.3 1.0

4. Results and discussion
The mean Kappa index and standard variation values of the classifications from 2008,
2010 and 2013 obtained using CML with binary or weighted a priori probabilities and the
ones obtained using ML are presented in Table 4. A hypothesis t-test showed that means
of classifications from the same date are statistically different in 0.01 significant level.
When using the CML, the classifications are done simultaneously. The likelihoods values
for each year are multiplied by the a priori probabilities for each class sequence. The
CML classifications are those whose class conditional probabilities give the maximum
when including the a priori value. As the a priori value is set as 0.0 for sequences with
impossible transitions, the class which gives the next viable sequence with maximum
compound likelihood forms the CML classifications.

All classifications were improved by the use of CML, using either binary or
weighted a priori probability of sequences. Although classifications from CML with
weighted probability of sequences showed the highest mean Kappa index values, this dif-
ference is small compared to the one using binary probabilities of sequences. The gain
(in %) in mean Kappa index values for CML classifications over ML ones is also shown
in Table 4. As can be seen, ALOS/PALSAR data from 2008 were the most improved
classification in CML approaches, with gains over 20% in Kappa index values.

Table 4. Mean Kappa index and standard variation values of the multi-temporal
classifications obtained using CML with binary a priori probabilities, ML and gain
in Kappa value of CML over ML.

Data Year # of Kappa index Gain in Kappa over ML (%)
classes ML CML CML

Binary Weighted Binary Weighted
ALOS/PALSAR 2008 4 0.49±0.02 0.59±0.03 0.60±0.03 20.5 21.9
LANDSAT5/TM 2010 10 0.70±0.01 0.72±0.01 0.73±0.01 3.0 3.3

EO-1/ALI 2013 8 0.70±0.02 0.74±0.01 0.76±0.01 6.8 9.1
Note: The class CA was not found in the study area in 2013. Therefore, only 8 classes were used.

Given the improvement in mean kappa index values from CML with weighted
a priori probabilities over ML classifications of ALOS/PALSAR data from 2008, the
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mean confusion matrices of these two classified images are presented in Table 5. As
can be observed, the increase in mean Kappa values are due to the improvement in the
classification of the classes ISV and F. This result was expected, since most impossible
transitions between 2008 and 2010 involve secondary vegetation and forest classes, which
are also classes with high confusion between them in the classification of ALOS/PALSAR
data, as previously observed by Pereira (2012). A subset of images classified using ML
and CML with weighted a priori probabilities is shown in Figure 4. Visually, it is possible
to note that while pixels are similarly classified as pasture or agricultural classes in both
methods, many pixels that would be misclassified as secondary vegetation classes are
changed to either MF, MA or mostly F in CML classifications.

Table 5. Mean confusion matrices (%) for ALOS/PALSAR classifications obtained
with ML and CML (with Weighted a priori probabilities).

Classified image
ML CML (weighted)

AG PA ISV F AG PA ISV F

Reference samples

AG 90.9 40.7 0.6 0.0 90.9 40.5 0.6 0.0
PA 8.7 49.7 4.6 1.4 8.7 49.7 1.9 0.1
ISV 0.3 8.9 39.1 31.9 0.3 9.3 49.1 11.2

F 0.1 0.8 55.7 66.7 0.1 0.6 48.3 88.7

Figure 4. Subset of images classified using ML and CML with weighted a priori

probabilities.

The mean Kappa index and standard variation values of the classifications from
2010 multi-source data are presented in Table 6. A hypothesis t-test showed that all mean
Kappa index values are statistically different at a 0.01 significance level. The use of both
CML with original data or ML with fused data similarly improved land cover classifica-
tion for ALOS/PALSAR data and 4 classes. However, results for LANDSAT5/TM data
and 10 classes are slightly less accurate when using CML to integrate the information of
this data and ALOS/PALSAR one. This behavior was also noted in fused data classifica-
tion, denoting that the additional use of ALOS/PALSAR data has the potential to decrease
accuracy of LANDSA5/TM image classification using either method. Nonetheless, CML
returned better values than those of ML classification of fused data in each legend. Even
though ML classification of LANDSAT5/TM presented more accurate results, differences
in mean Kappa index values for this classified image and CML using the same input data
are small (less than 0.01 in mean Kappa Value and a p value = 0.002). A subset of the
ALOS/PALSAR and LANDSAT5/TM images classified using CML and the fused images
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classified with ML are presented in Figure 5. Note that in this subset, CML was capable
of providing similar results than those of ML over fused data, without the necessity of a
fusion process. It also allows for the use of different legends in the same classification
process.

Table 6. Mean Kappa index and standard variation values of classifications of the
same year and gain in Kappa value of CML over ML of original and fused data.

Data Year # of Kappa index Gain in Kappa
classes ML CML from CMLa (%)

ALOS/PALSAR 2010 4 0.52±0.03 0.79±0.02 51.1
LANDSAT5/TM 2010 10 0.70±0.01 0.70±0.01 -0.3

Fused data 2010 4 0.76±0.02 - 3.7
Fused data 2010 10 0.66±0.01 - 5.9

a In fused data line, this value refers to the gain in Kappa value for either ALOS/PALSAR (legend L1) or
LANDSAT5/TM (legend L3) over the classification of the fused image using ML in the respective legend

level.

Figure 5. ALOS/PALSAR and LANDSAT5/TM images from 2010 classified using
CML and the fused images classified with ML

5. Conclusions
A novel algorithm called Compound Maximum Likelihood (CML) was proposed in this
work. This algorithm expands the traditional Maximum Likelihood (ML) classifier, by
adding a multi-temporal a priori probability of class sequences. Therefore, information
from different images and legends can be used jointly in image classification, that occurs
in only one process. In CML, although errors occur, impossible transitions within class
sequences are eliminated from analysis. For each image being analyzed, it means that
if the class with the highest likelihood would return in a impossible transition, the next
one with the highest likelihood resulting in a probable transition would be assigned to the
pixel (or other analyzed object), which is not viable in hard algorithms like the traditional
ML.

Additionally to solving some of the problems of traditional post-classification
comparison change detection method, like eliminating impossible transitions from anal-
ysis, CML also incorporates the capacity of using information from multi-temporal set
of images from direct classification methods without the need to acquire labeled samples
from all class sequences in the data set. Since CML uses principles from both change de-
tections methods but is not a properly hybrid method, it pertains to a new change detection
category methods.
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CML was used to classify three remote sensing images from three different years
and in the same study area in Pará state, within the Brazilian Amazon. These were com-
pared to images classified independently by ML. Different legends and types of images
were used for each year. In this study case, all CML classified images presented higher
accuracy index values than ML ones, with the more increased values pertaining to the
classification of an ALOS/PALSAR image from 2008.

CML was first thought as a change detection algorithm, and as so is fully capable
to classify a set of multi-temporal images and return class sequence vectors that can be
then analyzed as change or no-change classes. It also has the potential to present the
probability of the class sequence. Compared to ML applied independently to two or more
images, the only additional feature necessary to use CML is the a priori probability of the
class sequences occurring. As presented in this work, the simple indication of possible
or impossible transitions is enough to improve land cover classification (improvement of
20% of the mean Kappa value for our test using ALOS/PALSAR data, for example). The
possibility of transitions is dependent on the studied area, time being analyzed and class
definition, but should be easily derived by the analyst who is familiar with the problem
being studied.

Nonetheless, a methodology to use CML to classify images from proximate dates
was presented in this work. Results were compared to the ones obtained by ML classifica-
tion of the same data set and of fused data. In this case, CML presented either very similar
or very improved results than the original data set, while all results for CML were better
than those obtained by the classification of fused data. Besides the better classification
results, in CML the fusion process is not necessary. It is also possible to use different leg-
ends for each data in the same classification process. Although there is the need to define
the a priori probabilities of sequences, this process is relatively simple when considering
data from the same date and legends with correspondent classes or group of classes.

A small data set was used in this work, considering a pixel based approach, to
show this approach potential. The use of a much larger multi-temporal data sets has the
potential to return even more improved results. Future work also include the application
of CML in contextual and region based approaches.
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