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ABSTRACT 
 

This work presents a comparative analysis of Deep Learning (DL) approaches for crop recognition from 

multitemporal sequences of SAR images. Convolutional Neural Networks (CNN) and Autoencoders (AE) are compared 

with a Random Forest (RF) classifier, all of them running on a feature space formed by image staking. Hand-crafted 

texture features were used for the RF approach. The DL approaches learned how to extract features for each pixel as part 

of training, whereby neighboring pixels were also considered. To evaluate the techniques under different crop dynamics, 

two Sentinel-1A datasets were used as testbed. The first one, from Germany, represents a comparatively simple dynamics 

of temperate regions, where typically there is a single harvest per year. The second dataset is from a tropical region in 

Brazil, which is characterized by a complex crop dynamics due to the diversity of crops with different phenology, and 

multiple harvests per year. In our experiments the DL approaches outperformed the RF baseline in almost all experiments, 

with a consistent superiority of CNN over AE.  
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1- INTRODUCTION 

Agricultural monitoring and crop yield 

estimation are important and challenging tasks to 

enhance food security. Remote sensing data provides a 

cost-effective way for agricultural monitoring and 

management. With the launch of more Synthetic 

Aperture Radar (SAR) satellites in the recent years, such 

as Sentinel 1-A, high spatial resolution images with low 

revisit time became affordable and allows to capturing 

changes over time related to different phenological 

stages of different crops.    

Support Vector Machines and Random Forest 

classifiers have been applied for crop classification in 

pixel-wise approaches (Mosleh et al., 2015, Sonobe et 

al., 2015). However, these methods disregard the spatial 

context. Object-based classification, extracting 

quantitative attributes from segments, has also been 

applied (Jiao et al., 2014). Nevertheless, the usage of 

segments might not exploit spatial context appropriately 

because most segmentation procedures ignore semantic. 

As the appearance of a parcel changes over 

time, the temporal context must also be considered for 

crop classification. Spatio-temporal Markov Random 

Fields (Liu et al., 2008) and Conditional Random Fields 

(Kenduiywo et. al., 2016) have successfully integrated 

both spatial and temporal information. These 

approaches achieved high accuracies, but also require 

expert knowledge about the problem.   

Deep Learning (DL) techniques have recently 

gained broad interest in the remote sensing (RS) 

community. Such techniques contain specific 

supervised and unsupervised feature-learning 

algorithms, which learn features from labeled and non-

labeled data. In fact, the state-of-the-art of RS image 

classification is based on DL techniques, such as 

Autoencoders (AEs) (Romero et. al, 2016), and 

Convolutional Neural Networks (CNNs) (Kussul et. al., 

2017), which integrate both spatial and temporal context 

in unsupervised and supervised ways, respectively.  

Most of crop type recognition researches have 

been conducted upon databases from temperate regions, 

where crop dynamics is comparatively simple because 

there is usually just a single crop per parcel during the 

whole season. On the other hand, crop dynamics in 

tropical areas is more complex due to multiple 

agricultural practices such as irrigation, non-tillage, crop 

rotation and multiple harvests per year, which make the 



traditional methods not suitable for the aforementioned 

approaches. However, most publications about crop 

recognition from multitemporal remote sensing images 

rely on datasets from temperate regions. 

In this scenario, the present work presents a 

comparative analysis among supervised and 

unsupervised DL based approaches for crop 

classification from sequences of multitemporal SAR 

images. Two Sentinel-1A datasets were used, the first 

one from a temperate and the second one from a tropical 

region.  

The rest of this paper is organized as follows. 

Section 2 introduces the basic architecture of AE and 

CNN. Section 3 presents the classification strategies 

compared in this work. Section 4 describes the datasets 

as well as the experimental protocol. Section 5 presents 

and discusses the experimental results. Section 6 closes 

the paper with a summary of the main conclusions and 

points to future directions. 

 

2-  FUNDAMENTALS 

A. Autoencoders (AEs)  

An Autoencoder is a Neural Network that uses 

an unsupervised learning algorithm to reproduce at its 

output the pattern presented at its input (Goodfellow et. 

al., 2016a). It has a hidden layer, whose outcome is used 

as a representation of the input. The network works in 

two phases: the encoder and the decoder. The encoder 

projects a d-dimensional input data onto an internal k-

dimensional (k is the number of nodes in the hidden 

layer) representation space. The decoder projects it back 

to the original d-dimensional input space. 

The learning process searches the parameter 

space for the set of values that minimizes the 

reconstruction error, a measure of the average 

discrepancy between the input and the corresponding 

output of the AE. Once the parameters have been 

learned, the encoder is used to generate for any input the 

corresponding internal representation, which is expected 

to be more discriminative than the original one. 

B. Convolutional Neural Networks (CNNs)  

CNNs (Goodfellow et. al., 2016b) are a Neural 

Networks in which an input image is convolved with 

multiple kernel matrices to extract specific features. The 

amount of spatial context taken into account relates to 

the size of the kernels. In the basic CNN architecture, 

after the image has been processed by a convolutional 

layer, a pooling layer reduces the data resolution.   

During the convolution the kernels slide over 

the input image. Each of these kernels can be seen as a 

feature identifier. The pooling is a form of non-linear 

down-sampling that reduces the amount of data in the 

spatial domain, and consequently the number of model 

parameters and the computational load. It also helps to 

avoid overfitting.  

The fully connected layer connects all neurons 

at the three dimensional output of the pooling layer to a 

one dimensional layer, which performs a nonlinear 

function. The final layer of a CNN comprises a single 

node for each class and an activation function (typically 

a softmax), which delivers class posterior probabilities.  

 

3-  METHODS 

This section describes the three crop 

recognition methods evaluated in this work. We chose 

as baseline the standard image stacking approach (RF-

stack), the most widely used approach for multitemporal 

remote sensing image analysis (Schneider, 2012). The 

other two methods are based on DL techniques: 

Autoencoders (AE-stack) and Convolutional Neural 

Networks (CNN-stack). An explanation of each of these 

methods is given in the following subsections. 

A. RF-stack 

This method consists in stacking the pixel wise 

features over all epochs. So, there is a single feature 

space for all epochs. Pixels at the same spatial 

coordinates share the same representation in this space. 

A Random Forest (RF) classifier assigns a class label to 

each pixel along the sequence. In our experiments the 

spatial context was captured by texture features. 

B. AE-stack  

In this approach, temporal and spatial context 

are exploited as part of the AE training. An AE is trained 

for each epoch separately extracting new feature 

representations. Similar to RF-stack, a classifier 

operates in the resulting feature space.  

The descriptor x of a pixel in each image is a 

vector that comprises a w×w×d patch centered at that 

pixel, where d is the depth of each input image. The 

training/inference procedure consists of the following 

steps: 1) select randomly M patches for each epoch in 

the sequence, 2) train an AE for each epoch using the 

corresponding set of M patches, 3) compute the 

representation of each pixel in each image using the 

encoded mapping functions learned by each AE, 4) take 

as descriptor the concatenation of those representations 

over the whole sequence and 5) as in RF-stack, apply a 

RF classifier using the aforementioned descriptors. 

C. CNN-stack  

The CNN architecture tested in this study 

consists of four layers: convolutional, max-pooling, 

fully connected and softmax layer. Similarly to (Kussul 

et. al., 2017), we train a CNN to describe a pixel location 

taking into account its neighborhood. In this method we 

use the concatenated original bands of all epochs in a 

given sequence. The descriptor x of a pixel in each 

image sequence is a dnw2 dimensional vector that 

comprises the w×w×d patch/sub-image centered at the 

same position in all n images in the sequence. 

 



4-  EXPERIMENTS 

A. Study areas and data 

Two datasets were used in our experiments. 

The Hannover dataset covers the surroundings 

of Hannover city, in Northern Germany, an extent of 

1728 km2. It consists of a sequence of 45 dual polarized 

(VH and VV) Sentinel-1A images captured from 

October 2014 to September 2015, with three to five 

images per month. Crops found in this area are barley, 

rye, wheat, canola, grassland, maize, potato and sugar 

beets. These crops go through different phenological 

stages within a season (Figure 1). Typical of temperate 

regions, in this dataset each parcel belongs to the same 

class over the whole season.  

Campo Verde is a municipality in the state of 

Mato Grosso, Brazil, with an extension of 4782 km2. 

The dataset consists of a sequence of 14 dual polarized 

(VH and VV) Sentinel-1A images captured from 

October 2015 to July 2016, with one or two images per 

month. The main crops found in this area are soybean, 

maize and cotton. Some minor crops such as beans and 

sorghum are also present. We joined in the class non-

commercial crops (NCC), millet, brachiaria and 

crotalaria. Other classes present in the dataset are 

pasture, eucalyptus, uncultivated soil (e.g. bare soil, soil 

with weeds, soil with crop residues), turf grass and 

cerrado (Brazilian savanna). Figure 2 shows the class 

occurrences per month in the dataset. 

 

B. Feature Extraction  

To test the RF-stack method we used hand-

crafted features. As in (Kenduiywo, 2016), four features 

were computed for both image bands from the GLCM 

matrix (correlation, homogeneity, mean and variance) in 

four directions (0, 45, 90 and 135 degrees) using a 3×3 

window. Then, each pixel was represented by a feature 

vector of dimensionality 32.  

Patches from the original bands of each epoch 

were selected as input features for DL techniques, each 

patch with sizes of 3×3×2 for AE-stack, and 5×5×2 and 

7×7×2 for CNN-stack for Hannover and Campo Verde, 

respectively. 

C. Experimental Protocol  

In all experiments we only classified the latest 

image of each data set. Sequences of different lengths 

were considered by adding earlier images consecutively. 

In the experiments on Hannover dataset pixels within a 

parcel carried the same crop label along all sequence. 

For Campo Verde, up to two crops may come about in a 

parcel. We also considered the class uncultivated soil. 

Recall that in all experiments only the final image of the 

dataset was classified. 

The proportion of reference data for training 

and testing for both datasets was about 20% and 80%, 

respectively. In order to balance the number of training 

samples for all classes we replicated samples of less 

abundant classes in Campo Verde. Since Hannover has 

comparatively few samples, we applied a data 

augmentation procedure. We selected 7,000 and 50,000 

training samples per class for Hannover and Campo 

Verde datasets respectively.  

 

Fig. 1 – Hannover’s crop phenology stages. Adapted 

from (Kenduiywo et. al., 2016). 

 

 
Fig. 2 – Campo Verde’s class occurrences per image. 

 

5- RESULTS 

Results for Hannover and Campo Verde 

datasets are shown in Figure 3 and Figure 4, 

respectively. The Figures summarize the results in terms 

of accumulated F1-score (bars) values per class and 

Overall Accuracy (OA) (curves) obtained for each 

method described in Section 3. Each group of bars 

corresponds to a sequence length. Within a group, the 

bar represents from left to right, the results for RF-stack, 

AE-stack and CNN-stack. Notice that the maximum 

possible value of the accumulated F1-score is equal to 

the number of classes × 100%, i.e., 800% for Hannover 

and 900% for Campo Verde. 

For both datasets the accumulated F1-score 

and OA improved as more images were added to the 

sequence, but only until a certain length. From then on 

the performance stabilized and no significant 

improvement could be obtained by lengthen the 

sequence. This is consistent with the intuition that data 

from an increasingly distant epoch contribute less and 

less to discriminate the crop class in the current epoch.  
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For the Hannover dataset (Figure 3) we 

achieved improvements on OA from 25% to 86%, from 

29% to 87.3% and from 32% to 88.7% for RF-stack, AE-

stack and CNN-stack, respectively, as more images were 

considered. In terms of OA all three methods delivered 

similar results, being CNN-stack consistently the best 

performing approach. RF-stack and AE-stack alternated 

as second/third best method for different sequence 

lengths. For the first 19 epochs (from September to 

February) the OA had a considerable improvement as 

more images were added to the sequence. For sequences 

between 19 and 45 images the performance remained 

almost constant for all methods. This behavior can be 

explained by the crop phenology stages shown in Figure 

1. From February to September there was more diversity 

among crops. Before February some crops are 

undistinguishable, as they are in the post-harvest and 

preparation stage and cannot be easily discriminated 

upon SAR data.  

The accumulated F1-scores reveal how each 

method performs on a class by class basis. Major 

improvements were achieved by DL techniques for 

increasing sequence lengths, being more evident for 

summer barley and potato. 

The results for Campo Verde (Figure 4) showed 

improvements on OA from 18.6% to 65.7%, from 43% 

to 66% and from 43.8% to 69% for RF-stack, AE-stack 

and CNN-stack respectively. Similar to Hannover for 

sequence up to 7 epochs (between March and July) the 

OA improved consistently for increasing sequence 

lengths. For sequences comprising 8 to 14 epochs the 

performance remained almost constant for all methods. 

This behavior can be explained by considering Figure 2. 

Prior to March, soybean is the dominant crop, which is 

replaced in March by maize and cotton. So, the 

information before March is less correlated to the crops 

prevailing in the end of the sequence. In terms of both 

accumulated F1-score and OA the DL based techniques 

improved considerably for increasing sequence length. 

Noticeably, CNN-stack outperformed all other methods 

for all sequence lengths, with a gain of up to 16% in F1-

score for sorghum, non-commercial crops, pasture, 

eucalyptus and cerrado.  

Finally, the best OA for Campo Verde was 

about 69%, whereas for Hannover it came close to 89%. 

We claim that the superior results on the Hannover 

dataset are due to the comparatively simple crop 

dynamics.  

 

6- CONCLUSION 

In this work, we reported the results of a 

comparative analysis of supervised and unsupervised 

Deep Learning based techniques for crop type 

recognition in a tropical and in a temperate region on 

sequences of multitemporal Sentinel-1A images. The 

results confirmed that the accuracy of the recognition 

improves as multitemporal data are used. However, the 

gain tends to vanish as data from increasingly remote 

epochs are added to the sequence.  

Deep Learning techniques outperformed the 

standard Random Forest approach in almost all 

experiments. By and large, the CNN approach was the 

best performing among all evaluated methods, mainly 

for the tropical dataset.  

It is further worth noticing that the accuracies 

were better for the dataset from a temperate than from a 

 
Fig. 3 – Accumulated F1-score per class (stacked bar plot) and Overall Accuracy (line plot) for different sequence 

lengths for Hannover dataset. From left to right in each bar group: RF-stack, AE-stack and CNN-stack. 

 



tropical region. Even though there were more available 

training samples for Campo Verde than for Hannover, 

the classification performance was remarkably higher 

for the Hannover. This is most probably due to the 

comparatively more complex crop dynamics. Future 

works will focus on incorporating prior knowledge 

about crop phenology into the DL based classification 

models.  
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