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Abstract. The temporal dimension of spatial data has been the subject of dis-
cussion in the literature for a long time. While there are numerous Database
Management System (DBMS) solutions only for spatial dimension, we did not
observe the same situation for spatiotemporal data. Considering this gap, our
purpose is to design and implement an extension to the DBMS PostgreSQL that
is based on a formal spatiotemporal algebra in order to incorporate representa-
tions of spatiotemporal data within the DBMS. The proposed extension can be
used in a large range of applications. We intend that this extension be a reason-
able framework to store and handling observational remote sensing data usually
present in applications like animal migration researches, wildfires monitoring,
vessel tracking for monitoring fishing, and the like. In this work, we show how
to apply it in a case study based on spatiotemporal data collected from drifting
buoys belonging to the NOOA’s Global Drifter Program.

1. Introduction

Earth Observation data generation has been increased since the last decades. This phe-
nomenon occurs, considering that a great amount of data are daily collected by different
missions such as CBERS1 in Brazil/China, Landsat2 in the USA and Sentinel3 in Europe.
The development of mobile positioning technologies and its low costs are also factors that
enable spatial data gathering through time.

These different data sources are associated with temporal dimension, mainly by
allowing the monitoring of spatially located objects in time, either by allowing the time
analysis by increasing the temporal resolution of the observations. The collection, rep-
resentation and processing of this data have been largely facilitated by database man-
agement systems (DBMS) and their spatial extensions, which are based on international
standards such as the OGC Simple Feature Specification [Herring 2011] and ISO geo-
graphic information standards [Kresse and Fadaie 2004]. Furthermore, while there are
numerous DBMS solutions supporting the spatial dimension, we do not observe the same
situation for spatiotemporal data.

1http://www.cbers.inpe.br/
2http://landsat.usgs.gov/
3https://sentinel.esa.int/
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The temporal dimension of spatial data has been the subject of discussion in the
literature for a long time. Additionally, some conceptual systems regarding to representa-
tion of spatiotemporal data have been proposed [Camara et al. 2014, Ferreira et al. 2014,
Erwig et al. 1999]. One of these systems, particularly discussed in [Ferreira et al. 2014],
is structured around the concept of observations, the basic unit of data acquisition of a
spatial temporal phenomenon. From observations, it is possible to generate three types
of spatiotemporal data: time series, trajectories and coverages. With these three types,
it is possible to represent the geo-ontological concepts of object and field and to define a
space-time algebra. The authors have implemented their work as a C++ library, that works
as middleware between the actual sources of data (databases of flat files, for example) and
their conceptual model.

We have observed a number of solutions for processing spatiotemporal data as
client side solutions. This approach may presents as disadvantage the introduction of an
overhead by transferring data between processes or even between machines when those
data are managed over a network. Differently from that, we propose a model that works
inside the database system.

Besides that, this approach can avoid memory issues for huge volume of data since
this is a solved subject in the context of relational DBMS such as PostgreSQL. Moreover,
spatiotemporal data usually consumes a higher volume of memory space. Considering
this drawback, our goal is to implement an extension to the DBMS PostgreSQL to provide
support for spatiotemporal types within the DBMS. The PostGIS geometry type is used
as a basic spatial representation for the extension. Furthermore, temporal dimension was
integrated to get our spatiotemporal type.

Here, we propose a spatialtemporal database extension. Based on the work of
[Ferreira et al. 2014], we introduce three new spatiotemporal data types for the DBMS
PostreSQL. Moreover, we implemented some algebra functions of those data. In order
to demonstrate how our extension can manipulate real data observations, we conducted a
case study based on the Global Drifter Program (GDP) database.

2. Background
According to [Sinton 1978], space, time and theme (or a quantity measure) are the
three dimensions of geographical structure and observation. In such a way, it is pos-
sible to observe by fixing one dimension, controlling another and measuring the other.
Hence, six types or structure of observation can be produced. Proceeding in this man-
ner [Ferreira et al. 2014] claim that we can capture all kind of spatiotemporal phenomena
exhaustively with three of them:

1. time series: fix time, control space and measuring theme;
2. trajectory: fix time, control theme and measuring space;
3. coverage: fix space, control time and measuring theme;

Time series and trajectory play an important role considering the necessity to an-
alyze data along time. The main difference between them remains in space dimension: in
case of trajectory we are interested in measuring the space locations of an given observed
phenomena, whereas in time series the measured data is gathered from a fixed space.

It is easy to see that the fix operation defines a domain from which the measured
data must be filtered in. In this manner, a geo-located time series are sequences of ob-
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Figure 1. The proposed model. Source: [Ferreira et al. 2014, p. 258]

servations over time of a measured phenomena that takes place in a given space domain.
For instance, Landsat series spans over 40 years and is a very informative temporal record
of radiance of geo-located sites represented by pixels [Roy et al. 2014]. This database
can provide significant data about each pixel spectral response time series that can be
further analysed to give us information about land use and land cover change over time
[Maus 2016].

On the other hand, trajectories can be seen as a sequence in time dimension of
geo-located observed geometries (points, lines, polygons or volumes) that are associated
to a given theme. For instance, database monitoring oceanic buoys give us a rich data
about its positions, water temperature and salinity. One can be interested on tracking
buoys positions over time to capture surface oceanic chains [Lumpkin and Pazos 2007].

Here, the time dimension organizes different space locations of a fixed theme (the
buoy). Another example, the policy for preventing Dengue epidemic may depend on
monitoring of egg traps over time [Regis et al. 2009]. In this case, one may be interested
to know all locations over time that presents a given higher level of captured mosquito
eggs (threshold theme). The main difference between these two examples of trajectories
is the kind of fixed theme. In the first one, the fixed theme was an identifiable object
entity, a buoy. In the second one, we used a measured data not related to a specific object
entity but a condition that may involve a set of objects. This condition refers to object’s
properties and can denote events. For example, if we are interested in flood monitoring
in some urban area, we may relate the event flood to a condition of water precipitation
metered by a set of pluviometers.

Objects and events play a key role on the interpretation of a spatiotemporal data
[Ferreira et al. 2014, Worboys 2005]. In this approach, an object is any identifiable entity
over time and an event is an episode on the time that may relates to one or more objects.
Episodes have a definite begin and an end. Events may be distinguished by punctual
occurrence, if it occurs instantaneously, or durative, if it takes some time [Galton 2004].
An event does not change over time and we can derive them from conditions of spatial
and non-spatial properties of objects, as we can see from the example above. Figure 1
summarizes this model.
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Spatiotemporal structures can be implemented on computer systems as data types.
A data type is a set of values over which we can define some operations. To formalize
these ideas, [Ferreira et al. 2014] follow [Guttag and Horning 1978] and propose an alge-
braic specification that consists of (1) definitions of type names, their domains, ranges,
and operations; (2) a set of axioms that expresses truth relations among those opera-
tions. PostgreSQL works similarly: all data has a type with an explicit or implicit
ranges; all functions operates over some types and returning new data. To comply with
[Ferreira et al. 2014] abstract model, we just need to guarantee that PostGIS-T functions
be implemented in such a way that its behavior be consistent with axioms specification. In
what follows, we describe how our extension implements and represents spatiotemporal
data.

3. PostGIS-T model

PostGIS-T introduces the SPATIOTEMPORAL type, a composite PostgreSQL type that
plays the same role as SpatioTemporal type in [Ferreira et al. 2014]. The main dif-
ference between them is that unlike SpatioTemporal, SPATIOTEMPORAL type can
represent both TimeSeries, Trajectory and, Coverage and does not work with
the idea of abstract type that is specialized later.

In order to access and manipulate the data, we must define functions. To
achieve the same level of specification, we have implemented each declared operator in
[Ferreira et al. 2014] model definition. We list all function signature in Table 1.

PostGIS-T stores observations as tuples in one or more relations that can be further
queried to instantiate SPATIOTEMPORAL data. To get a new SPATIOTEMPORAL data,
we use TST SPATIOTEMPORAL() aggregate function.

As we can see, PostGIS-T was built over PostgreSQL and PostGIS. For exam-
ple, spatial representations are GEOMETRY values, a type introduced by PostGIS. As
a first prototype we have limited measure values as NUMERIC type, so that an obser-
vation must be a triple (TIMESTAMP, GEOMETRY, NUMERIC). In order to instantiate
SPATIOTEMPORAL data we must call TST SPATIOTEMPORAL() inside a query in-
forming where to find these values.

Spatiotemporal data may be interpreted differently depending on the underlying
phenomena it represents. As previously discussed, we could conceive an observation as
taking place continuously or instantaneously. Our data type was defined to accommodate
all spatiotemporal data phenomena without a specific semantic. For example, we does
not know in advance if we should conceive an observation as an occurrent or a dura-
tive one, or if the sample observation is a time series or a trajectory. To overcome this
limitation, we have implemented some functions that can be combined in order to get
the right phenomena interpretation. These functions are TST ESTIMATE MEASURE(),
TST ESTIMATE LOCATION(), TST RESAMPLE TIME(), and TST COVERAGE().

If we are interested in how to get an approximate measure between two empiri-
cal observed phenomenon we must take into account its underlying nature, that is, if it
refers to an object or to an event. For example, we took observations of a drifter float-
ing on the ocean at times 10:00AM and 11:00AM, and we are interested to know its
location at 10:30AM. We may assume that a linear interpolation would give us a good
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approximation and so we call TST ESTIMATE LOCATION() function informing the
SPATIOTEMPORAL data, the time of interest to calculate the interpolation (in this case
10:30AM), and the interpolation method name ’LINEAR’ as parameters. For now, we
have implemented a small set of interpolation methods that we can use, ’LINEAR’,
’LAST’ or ’NEAREST’, meaning, respectively, simple linear interpolation, last reg-
istered location or measure before or equal a given time, and the closest time regis-
tered location or measure of a given time. The process to estimate a measure from a
SPATIOTEMPORAL is analogous.

Other useful application of interpolators are re-sampling data. PostGIS-T is able
to re-sampling time observations between a time range at regular time resolution with
the function TST RESAMPLE TIME(). This function returns a regular time spaced
SPATIOTEMPORAL data whose locations and measures were estimated according to a
given interpolation method (see more details in section 4).

Furthermore, if we are interested to re-sampling our observations through space
in order to produce what [Ferreira et al. 2014] calls coverage, we use the function
TST COVERAGE(). This function returns a SPATIOTEMPORAL data whose observa-
tions refer to a regular extent over which measures are aggregated into an unique value
according to a given aggregate strategy (e.g. ’COUNT’, ’AVG’, ’MIN’, ’MAX’ and
’AREA’). The result is a time flattened spatiotemporal data where no gap and no over-
lapping area exists between two adjacent extents. In [Ferreira et al. 2014] model, this
represents a Coverage.

Other functions are related to operations that retrieve SPATIOTEMPORAL prop-
erties or subset of the spatiotemporal data. For instance, the functions TST BEGINS()
and TST ENDS() indicates the start and the end times for the sampling, whereas
TST HULL() gives its convex hull polygon where observations took place. Finally, to
get the max and the minimum values of the measured data, we must use the functions
TST MIN() and TST MAX(), respectivelly. On other hand, the TST DURING() func-
tion returns all observations that have been made in a given time range. Likewise, to get
only a given location samples, we use the function ST INTERSECTION() passing to it
the area or point of interest.

A complete and comprehensive documentation can be found in the extension’s
webpage https://gitlab.dpi.inpe.br/postgis-t. In the following section,
we demonstrate an application of how to use PostGIS-T.

4. The Global Drifter Program: a case study with real spatiotemporal data
Regarding to spatiotemporal data and its complexity, we chose the satellite-tracked sur-
face drifting buoy (drifter) data to evaluate and get experienced with the extension im-
plementation details in PostgreSQL environment. The Global Drifter Program (GDP) is
a branch of the National Oceanic and Atmospheric Administration (NOAA). It aims to
maintain a global satellite-tracked surface drifting buoys and to provide the data set for
scientific purposes, as climate predictions and climate research and monitoring. In this
manner, GDP produces observations from most areas of the world’s oceans at sufficient
density to map the mean currents at one degree resolution [Lumpkin and Pazos 2007].

Drifter is a surface buoy connected with a subsurface drogue. Its observations have
been largely used in oceanographic and climate researches. The main use of this data is to
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Function signature Return type
TST SPATIOTEMPORAL(TIMESTAMP, GEOMETRY, NUMERIC) SPATIOTEMPORAL

TST ESTIMATE MEASURE(SPATIOTEMPORAL, TIMESTAMP, TEXT) NUMERIC

TST ESTIMATE LOCATION(SPATIOTEMPORAL, TIMESTAMP, TEXT) GEOMETRY

TST RESAMPLE TIME(SPATIOTEMPORAL, TSRANGE, INTEGER, TEXT) SPATIOTEMPORAL

TST COVERAGE(SPATIOTEMPORAL, INTEGER, INTEGER, TEXT) SPATIOTEMPORAL

TST BEGINS(SPATIOTEMPORAL), TST ENDS(SPATIOTEMPORAL) TIMESTAMP

TST HULL(SPATIOTEMPORAL) GEOMETRY

TST AFTER(SPATIOTEMPORAL, TIMESTAMP) SPATIOTEMPORAL

TST BEFORE(SPATIOTEMPORAL, TIMESTAMP) SPATIOTEMPORAL

TST DURING(SPATIOTEMPORAL, TSRANGE) SPATIOTEMPORAL

TST INTERSECTION(SPATIOTEMPORAL, GEOMETRY) SPATIOTEMPORAL

TST DIFFERENCE(SPATIOTEMPORAL, GEOMETRY) SPATIOTEMPORAL

TST MEASURE(SPATIOTEMPORAL, TIMESTAMP) NUMERIC

TST MEASURE(SPATIOTEMPORAL, GEOMETRY, TEXT) NUMERIC

TST MIN(SPATIOTEMPORAL), TST MAX(SPATIOTEMPORAL) NUMERIC

TST LESS(SPATIOTEMPORAL, NUMERIC) SPATIOTEMPORAL

TST GREATER(SPATIOTEMPORAL, NUMERIC) SPATIOTEMPORAL

TST BETWEEN(SPATIOTEMPORAL, NUMRANGE) SPATIOTEMPORAL

TST LOCATION(SPATIOTEMPORAL, TIMESTAMP) GEOMETRY

TST EQUALS(SPATIOTEMPORAL, SPATIOTEMPORAL) BOOLEAN

TST INTERPOLATOR(SPATIOTEMPORAL) TEXT

TST SETINTERPOLATOR(SPATIOTEMPORAL, TEXT) SPATIOTEMPORAL

TST OBSERVATIONS(SPATIOTEMPORAL) INTEGER

Table 1. List of all defined PostGIS-T functions

map oceanic surface currents of different seas and oceanic regions of the planet. Also, the
data can be used to calibrate satellite sensors. Each drifter has an unique identifier code
and is equipped with sensors that periodically measure properties such as salinity and
surface temperature of the water. All these data are subsequently transmitted to satellites.
The drifter’s position and velocity are usually inferred by Doppler shift, which occurs
during the transmission step. The positioning system, also known as Argos, provides
drifter locations with O (100m) errors. The raw data are then assembled and normalized
by the Drifter Data Assembly Center of the Atlantic Oceanographic and Meteorological
Laboratory (DAC/AOML).

The GDP drifter database used contains 2, 263, 842 collected locations with re-
spective zonal and meridional velocities observations for 408 drifters worldwide. The
time resolution of the observation is one hour. More information about how this database
was collected can be see in [Elipot et al. 2016].

All data sample were loaded in a table of observations as defined in the Listing
1. Subsequently, we proceeded with data instantiation by calling the aggregate func-
tion TST SPATIOTEMPORAL(TIMESTAMP, GEOMETRY, NUMERIC). All the fol-
lowing queries uses this table.

Sometimes it is useful to change the amount of observations of a given
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1 CREATE TABLE buoy_obs_st (
2 buoy_id INTEGER PRIMARY KEY,
3 spatiotemp SPATIOTEMPORAL
4 );

Listing 1: Definition of the spatiotemporal table buoy obs st.

data. In PostGIS-T, we can obtain a new sample of a trajectory by the function
TST RESAMPLE TIME(). This function receives as parameter the spatiotemporal data,
the time interval that we are want re-sampling, the number of observations to be re-
sampled, and the interpolation method. Note that the extension makes no assumption
about the observation continuity or duration. In this regard, an appropriate interpola-
tion method must be informed by the user. The queries in Listing 2 shows how do we
re-sample observations. A graphical result is presented in Figure 2.

1 SELECT buoy_id,
2 TST_RESAMPLE_TIME(
3 spatiotemp,
4 TST_OBSERVATIONS(spatiotemp) / 10,
5 ’LINEAR’)
6 FROM buoy_obs_st;

1 SELECT buoy_id,
2 TST_RESAMPLE_TIME(
3 spatiotemp,
4 TST_OBSERVATIONS(spatiotemp) * 2,
5 ’LINEAR’)
6 FROM buoy_obs_st;

Listing 2: Re-sampling on time. Query on the top (bottom) reduces (increase) the time
resolution.

Figure 2. Trajectory re-sampling. From left to right: original data, re-sampling for
every 10 hours, re-sampling for every 30 minutes.

Re-sampling technique may be employed to synchronize data observations, in or-
der to speed-up queries that performs sequential time calculations. Comparing trajectories
(a) and (b) from the Figure 2, we can note that some trajectory sections can be well ap-
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proximated by few interpolated observations. These sections mainly resembles straight
segments.

Another useful application of these data is to estimates the mean velocity of ocean
currents over different regions and a given period of year. This is a very important ques-
tion in related climate researches. Velocity may be represented by a vector that informs
us about the direction and speed magnitude of the moving entity. Here, re-sampling tech-
nique may be useful if we would like to measure the mean direction of currents.

Suppose now we are interested to measure the mean velocity magnitude of a drifter
between a small time range (for the sake of simplicity). How can we proceed in PostGIS-
T? First we need a function that returns the observations of a given time interval. This
function is TST DURING() which returns a SPATIOTEMPORAL data. From this re-
sult, TST COVERAGE() creates a regular grid whose extent is the same as observations
location bounding box.

The dimensions of that grid is given as parameters to the function. A new mea-
sure is then calculated for each cell grid according to aggregate strategy. Thereafter, a
new SPATIOTEMPORAL data is instantiated and returned. The corresponding query is
presented in Listing 3 and a graphical representation is showed in Figure 3.

1 SELECT buoy_id,
2 TST_COVERAGE(
3 TST_DURING(
4 spatiotemp,
5 TSRANGE(
6 ’2015-05-18 14:00:00’,
7 ’2015-05-20 14:00:00’, ’[]’)
8 ), 7, 13, ’AVG’)
9 FROM buoy_obs_st

10 WHERE buoy_id = 132470;

Listing 3: Coverage.

Figure 3. Coverage calculated from drifter mean velocity. Blue-Red colors de-
notes lower-higher velocities.

From Figure 3 we can see that not all cells grid contains a drifter observation.
Only those regions that have at least one register has a measure value equals to that of
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velocity average. In order to fill those cells grid we would need a spatial interpolator. The
process to get a coverage of velocity magnitudes is similar.

5. Conclusions
Here, we have proposed a spatiotemporal database extension based on conceptual model
of [Ferreira et al. 2014]. We have implemented this model with some adaptations for the
relational database environment. However this adaptation was not conceptual but opera-
tional. For example, in this preliminary version we did not provide a way to extend the
base of interpolation methods used as a parameter of function like TSTRESAMPLETIME.
In spite of that, the implementation shows us that the spatiotemporal model proposed in
[Ferreira et al. 2014] is feasible in an relational DBMS context.

Our first approach suggest that this model may be more indicated to applications
of sparse geo-referenced data like movable objects (e.g. drifters, ship trajectories) and
observed events (e.g. wildfires, disease occurrences). This applications should work
better over snapshots of the original data as the task of packing a huge spatiotemporal
tuples is expensive. However, it is too early to note some processing improvement from
our data type columnar design.

Further research and development consist of: (a) designing a compact and efficient
disk storage layout for values of SPATIOTEMPORAL type; (b) introduce the notion of
subtypes of SPATIOTEMPORAL as type modifiers (TIMESERIES, TRAJECTORY and
COVERAGE), which will give more constraint about the data and the result of operations;
(c) how to include spatiotemporal indexes that could take advantage of approximations of
spatiotemporal data; (d) explore the extension with big spatiotemporal data applications
in a database cluster environment.

As a first approach, we have prototyped the PostGIS-T extension with
the high level SQL and PL/pgSQL languages. The next version of this ex-
tension will be developed in the C programming language and it will include
a view named spatiotemporal columns with the same purpose of PostGIS
geometry columns. Moreover, we will provide a larger number of functions to deal
with different spatiotemporal data manipulation demands.
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