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Growing availability of long-term satellite imagery enables change modeling with advanced spatio-
temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-
temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis
over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series
for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend)
change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change
and a change point time locating process. We extend the EFP to account for the spatial autocorrelation
between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite
image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series
residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a
unified data structure for the modeling process, R to execute the analysis, and an array database manage-
ment system to scale computation. Our results point to BFAST as a robust approach against mild temporal
and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and
towards communicable and scalable analysis.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Advanced earth observation satellite sensors provide remote
sensing products that are rich in spatial, temporal, and spectral
information. Open access policies of space agencies and the pro-
gress of remote sensing technologies make these products more
accessible, which enables a wide range of novel applications, such
as near real-time global change monitoring. This, however, calls for
efficient handling and scalable processing of the massive amounts
of available data. Major challenges include big data management,
multidimensional data information extraction, and complex
large-scale spatio-temporal change modeling procedures imple-
mentation and result visualization. These challenges call for novel
data management and analytics tools and advanced spatio-
temporal statistical algorithms.

Typical remote sensing satellite images are regularly discretised
in space and time, and can naturally be represented as multidi-
mensional arrays. The array data structure facilitates change
modeling in many ways. Firstly, the array data structure allows a
clean data processing procedure which simplifies data preparation,
and avoid data structure conversions during the analysis. Wickham
(2014) calls the unified data preparing process to ‘‘tidy data”, and
suggests restructuring all datasets into single, long tables. Since
most earth observation data (i.e. earth information collected by
remote sensing technologies) come as time series of multispectral
images, and structuring such datasets into arrays is the more
natural approach for data storage, analysis and visualization. In
addition, the array data structure allows flexible application of
spatio-temporal statistical algorithms (Zscheischler et al., 2013)
and other information extraction methodologies (Mello et al.,
2013), which was already exploited in the on-line analytical pro-
cessing (OLAP) approach to analyze business data (Chaudhuri
and Dayal, 1997; Viswanathan and Schneider, 2011). Finally, the
array data structure facilitates parallelizing of the modeling
process (Stonebraker et al., 2013). Array Data Management and
Analytics Software (DMAS), which stores and operates on data as
multidimensional arrays, can thus be used to scale the process
and resolve the difficulties of large memory consumption and com-
putational bottlenecks usually found in non-parallelized systems.
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Examples of array DMAS include SciDB (Cudre-Mauroux et al.,
2009) and rasdaman (Baumann, 1994).

Remotely sensed image time series analysis (Verbesselt et al.,
2010; Broich et al., 2011) has been drawing more attention in
pixel-based change detection in recent years (Jianya et al., 2008;
Banskota et al., 2014) due to the increased availability of long-
term satellite image time series and improved computational
power. Statistically, these methods can be classified as detecting
change in mean (Kuan and Hornik, 1995), (e.g. by tests based on
OLS (Ordinary Least Squares) residuals such as CUSUM (Cumula-
tive Sum) test (Brown et al., 1975)), or change in regression param-
eters, (e.g. by tests that assess all regression coefficients such as
supLM (supremum Lagrange Multiplier) test (Andrews, 1993;
Zeileis and Hothorn, 2013)). Change detection with time series
imagery solves many problems that are infeasible with bi-
temporal analysis (Coppin et al., 2004; Jianya et al., 2008). There
are several examples: (1) image time series analysis enables detec-
tion of unknown historical changes retrospectively, and monitor-
ing of changes in near real-time (Verbesselt et al., 2012); (2)
image time series analysis is able to classify land cover types that
are of subtle differences in reflection. For example, one difficulty in
analyzing tropical forest conservation from remotely sensed ima-
gery pairs is to discriminate plantations from secondary forests
(Lucas et al., 1993); (3) the regression model is flexible, and can
integrate variables that will affect the process. For example, it is
hard to distinguish between climate-induced forest drought and
anthropogenic deforestation. Integration of climate variables, such
as precipitation and temperature, can assist differentiating
between these changes (Dutrieux et al., 2015); (4) in terms of reli-
ability, satellite image time series analysis has the advantage of
being more resistant to noise (Coppin et al., 2004).

One popular time series change detection tool that raised
attention in image time series analysis is BFAST (Breaks For Addi-
tive Season and Trend) (Verbesselt et al., 2010, 2012). BFAST con-
stitutes a change detection procedure on top of a comprehensive
set of serial structural change detection tools. BFAST has been
applied in various cases, such as detection of shifts in vegetation
trends (Jong et al., 2012; Forkel et al., 2013). BFAST detects the
structural change in trend and seasonality of a time series, which
has many applications. For example, the seasonality between
agriculture products (e.g. soybean) and rainforest are different,
which enables the discrimination of different kinds of forest dis-
turbances (e.g. changes from forest to agriculture vs. forest fire).
BFAST treats observations as serially uncorrelated. Since it models
pixel time series independently, possible spatial correlation
around the area is ignored. Simple extensions to BFAST could
model the residuals as an autoregressive (AR) process, and/or
adopt a simultaneous autoregressive (SAR) model for the spatial
residual process.

In this paper, we apply BFAST to our study region, and evaluate
the effect of extending BFAST with temporal and spatial correla-
tions. We want to do this in such a way that (1) it can be extended
to global-scale data and (2) it is reproducible by other scientists
within a reasonable effort. This means that we need to use a
high-level data analysis language, such as R; that we need to use
an open source Array Data Management and Analytics Software
(DMAS) that allows parallel execution of the R code; and finally
that we publish all the scripts to recreate the database and carry
out the computational experiments on the data.

The study case concerns historical forest cover change detection
with long-term MODIS image time series. We show how pixel-
based time series analysis are extended to region-based joint
spatio-temporal analysis, how the whole change modeling process
and spatio-temporal information exploitation are simplified by
multidimensional arrays, and how Array DMAS implement
and scale the process. The study case is extensible and the
methodologies are generic and can form the basis for further
remote sensing data experiments.

The paper is organized as follows. Section 2 introduces and dis-
cusses multidimensional arrays. Section 3 describes how we model
spatio-temporal change. Section 4 introduces the study case. Sec-
tion 5 presents results, and Sections 6 and 7 finish with discussion
and conclusions, respectively.

2. Multidimensional arrays

Most natural phenomena can be represented in multidimen-
sional arrays once they are sampled and quantized in a computer
system. The dimensionality of an array can be flexibly set for effi-
cient information extraction and modeling. Examples of practical
array abstraction include: 1-D ordered tables or time series (t);
2-D satellite images (x/y); 3-D satellite image time series (x/y/t);
4-D multi-spectral spatio-temporal data (band/x/y/t); subsurface
hydrological data (x/y/z/t); and 5-D multi-sensor, multi-spectral
spatio-temporal data (sensor/band/x/y/t).

2.1. Potential application of multidimensional arrays in remote sensing

As a multidimensional data structure, arrays have the potential
to bring many advanced information extraction into practical use.
For example, instead of using a single spectral layer (e.g. vegetation
index), multi-spectral multi-temporal approaches (e.g. spectral-
temporal surface (Mello et al., 2013)) use more information and
thus are able to better represent the earth surface (Mello et al.,
2013). This multi-spectral multi-temporal approach can be inte-
grated with spatial information. Data can be organized as 4-D
arrays with space, time and bands as four dimensions, and algo-
rithms can be applied to them. Similar examples can be found in
data fusion (Castanedo, 2013), where data from different sensors
can be organized on two dimensions, and in spatio-temporal statis-
tical modeling. In addition, the developed spatio-temporal statisti-
cal algorithms can be flexibly applied within array partitions that
span the relevant array dimensions. This study especially demon-
strates how array data can be used in spatio-temporal change
modeling, and how an Array Data Management and Analytics Soft-
ware System (DMAS) can be used for parallelization and scaling.

2.2. Tidy data with array data structure

The open source data analysis programming language R (R Core
Team, 2015) provides rich data analysis tools. All entities R works
on are objects. A special type of object is the array. For instance, the
following code segment creates a 100� 100� 10� 5 array,
requests its dimensions, prints the length of the data vector (the
product of the dimensions), and shows the length of a one-
dimensional sub-array (vector) in the third dimension:

> a = array(NA, c(100,100,10,5))

> dim(a)

[1] 100 100 10 5

> length(a)

[1] 500000

> length(a[10,10,,1])

[1] 10

Such arrays are held in main memory, are dense, and hence do

not scale to massive data or for sparse arrays. They allow to effi-
ciently carry out functions over single dimensions (or sets of
dimensions), such as is done in remote sensing time series analysis.
Also, arrays keep no information on how dimensions or indexes
relate to time, space, or other data properties, so they require addi-
tional book-keeping.
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Certain types of object are developed to facilitate spatial, tem-
poral or spatio-temporal analysis. For example, time series objects
are used for time series analysis; the space–time objects in R
(Pebesma, 2012) are developed for spatio-temporal data process-
ing, analysis, and visualization; the R packages raster (Hijmans,
2015) and spatial.tools (Greenberg, 2014) are used to process and
analyze large-scale raster data. Functions are then developed for
specific types of objects. Spatio-temporal Kriging functions work
with space–time objects, and map algebra operations (Tomlin,
1990) can be applied to a raster. As an example, a space–time array
with air quality data aq can be subsetted for a particular state, time
period, and air quality parameter by

aq[California, "2008--03::2014--09",

"BlackSmoke"]

which indicates that reference to spatial, temporal, and measured
Fig. 1. Distribution of the computation to multiple SciDB nodes.
quality are directly expressed in the syntax, and do not require
the use of integer indexes.

We use arrays as a flexible data structure for change modeling
with multiple dimensionality. Those objects (space–time, raster,
etc.) that can be viewed as simple arrays with attributes, can con-
veniently be converted to multidimensional arrays and between
each other. In addition, array as an object can be used for the anal-
ysis of spatially and temporally regularly sampled spatio-temporal
data. Thus we ‘‘tidy data” (Wickham, 2014) by organizing data as
multidimensional arrays, and use array data to provide a clean,
communicable, and scalable way for spatio-temporal data analysis.

2.3. Array Data Management and Analytics Software (DMAS)

R and MATLAB (MATLAB, 2015) are powerful data analysis tools
that support array data. However, for these data analytics systems
storage and computation are relatively difficult to scale when deal-
ing with massive data. In this study we use SciDB (Cudre-Mauroux
et al., 2009) array DMAS, which scales by design. SciDB splits large
arrays into equally sized and potentially overlapping chunks of
data, which are assigned to different worker nodes. These worker
nodes may be processed on the same machine, or distributed over
a cluster composed of independent servers (Fig. 1). Each node con-
trols its own storage and memory. One of the nodes is the coordi-
nator, which is responsible for client–server communications and
for query execution coordination. The remaining worker nodes
participate in the distributed query processing. As a result, SciDB
automatically considers both parallelization and out-of-core pro-
cessing. The earth observation community is exploring the spatial
analysis applications of array databases. Planthaber et al. (2012)
use SciDB as an analysis platform for processing low level MODIS
products. As SciDB does not provide specific spatio-temporal inter-
faces, Câmara et al. (2014) propose to extend SciDB with a spatio-
temporal query interpreter, and create a platform to analyze the
spatio-temporal field data type.

2.4. Scaling the process with SciDB and R

Ongoing research attempts to integrate SciDB and R, to access
both the scalability and the data management capabilities of
SciDB, as well as the data analysis power of R (Leyshock et al.,
2013). SciDB provides two ways to interact with R: by SCIDBR
and by r_exec. The R package SCIDBR (Lewis, 2015a) acts as a
SciDB client. In this way SciDB operations are wrapped into R
syntax, and are performed on SciDB arrays through the R inter-
face. It uses a reference in R to point to SciDB array, and data
can be materialized in R through indexing. For example, we can
extract data from the array that we stored in SciDB called Juar-

a_array, which is a 849� 945� 636 array with ‘‘evi2” as one of
the attributes. We extract the evi2 value of pixels at location (1,1)
from time 1 to time 4:

> library("SCIDBR")

> scidbconnect("http://the.server.org/", port

= 49971)

> Juara scidb("Juara_array")
> Juara

A reference to a 849x945x636 SciDB array

> Juara[1,1,1:4][,"evi2"][]

[1] 0.5837997 0.4504056 0.1979948 0.3451148
While this way greatly facilitates data exchange between SciDB
and R, it restricts applications to the use of built-in SciDB opera-
tions only, or requires moving all data in and out of R.

The alternative way of integration is to invoke R scripts inside
database queries through a SciDB plugin r_exec (Lewis, 2015b):
The r_exec function (Lewis, 2015b) works in R as:

load_library("r_exec")
r_exec(Input_Array, "expr = R_expression")
The R code is written after expr=. The results are returned as a
list and can be restored into SciDB arrays. This allows for including
functionality of R and its extension packages. Each SciDB instance
runs its own R processes (Fig. 1) and scripts are called indepen-
dently over all chunks.

3. Spatio-temporal change modeling

Most of spatio-temporal analysis approaches are developed in
two separate stages – spatial analysis after time series analysis,
or time series analysis after spatial analysis (Schabenberger and
Gotway, 2004). Two-stage approaches miss information spanning
both space and time (Schabenberger and Gotway, 2004). Joint
spatio-temporal analysis, which accounts for the spatio-temporal
dependency and jointly model the spatio-temporal process, is
preferable over two-stage methods. Some modern statistics
develop joint spatio-temporal change detection methods by using
random fields (Bolin et al., 2009), or hierarchical modeling (Cressie
and Wikle, 2011), which could integrate spatial information in
time series analysis. However, most methods only detect gradual
change (i.e. if the trend of the time series regression is significant).
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There are few works that attempt joint spatio-temporal change
detection for abrupt changes (Zscheischler et al., 2013). In addition,
the added complexity of spatio-temporal analysis may make the
process impractical. Indeed, even pure time series analysis algo-
rithms are difficult to apply on a large scale (Ban et al., 2015).
3.1. BFAST

BFAST decomposes the time series into seasonal, trend, and
remainder components with STL (Seasonal-Trend decomposition
procedure based on Loess) (Cleveland et al., 1990). Then BFAST
sequentially detects breakpoints in trend and seasonal components
in an iterative way. This breakpoints detection process consists of
two steps: notifying the structural change of the time series, and
estimating breakpoints. In the first step, a fluctuation test on
regression residuals can be chosen from a group of Empirical Fluc-
tuation Process (EFP) methods implemented by Zeileis et al.
(2003). If the EFP test suggests the structural change in time series,
the number and location of the breakpoints will be estimated using
the method of Bai and Perron (1998, 2003) (referred to as BP
method). This method dynamically locates the optimal position
of the breakpoints by minimizing the SSR (Sum of Squared Resid-
ual), and determines the optimal number of the breakpoints by
minimizing the BIC (Bayesian Information Criteria). An example
of a graphical output of BFAST is shown in Fig. 2.
3.2. Extended BFAST

In an extended version of BFAST, we mainly improve on the
EFP by (1) Fitting a trend-seasonal model instead of decomposing
time series into trend and seasonal components, (2) integrating
AR(1) to account for the serial autocorrelation, and (3) integrating
SAR model to account for the spatial autocorrelation. From the
EFP we can get the p-value for the time series of each pixel. If
the p-value is less than the significance level (e.g. 0.05), the BP
method (Bai and Perron, 1998, 2003) in BFAST is applied to iden-
tify the number and time of the breakpoints. Different signifi-
cance levels were experimented with to observe if the results
were improved.
Fig. 2. An example of graphical output of BFAST. Yt is the graph of raw time series
of the EVI2 (Jiang et al., 2008) vegetation index, St is the graph of the seasonal
component, Tt is the graph of the trend component, and et is the graph of the
residuals. In this example, three abrupt changes are detected in the trend
component and the corresponding confidence interval of these breakpoints are
indicated.
3.2.1. Empirical fluctuation process
Given the linear regression model:

yi ¼ x|i bi þ ui; ði ¼ 1; . . . ; tÞ ð1Þ
where xi contains m independent variables, and bi is an m� 1 coef-
ficient vector. The test is concerned with testing the constancy of
the regression coefficients bi (Kuan and Hornik, 1995). The null
hypothesis (H0) of the fluctuation test is that the bi ¼ b0 for all i.
Under H0, the fluctuation of ui is characterized by the Functional
Central Limit Theorem (FCLT) (Basseville and Nikiforov, 1993), of
which the CUSUM (Cumulative Sum) of regression residuals con-
verge to a Brownian Motion. Thus, a change in bi can be detected
if the CUSUM of regression residuals do not satisfy the FCLT
(Basseville and Nikiforov, 1993). In this study we specifically look
at OLS-CUSUM (Ploberger and Krämer, 1992) and OLS-MOSUM
(Moving Sum) tests (Chu et al., 1995). Compared with the OLS-
CUSUM test, which uses all the residuals, the OLS-MOSUM test
applies a predefined moving window that accumulates a fixed num-
ber of residuals within the window. The limiting process of OLS-
CUSUM is a standard Brownian bridge (Ploberger and Krämer,
1992). The limiting process of OLS-MOSUM is increments of a Brow-
nian bridge (Chu et al., 1995).

We assume the model has a linear trend and a harmonic season,
and adopt the model described in Verbesselt et al. (2012). The x
and b in this model are:

x ¼ 1; t; sinð2p1t=f Þ; cosð2p1t=f Þ; . . . ; sinð2pkt=f Þ; cosð2pkt=f Þð Þ|

b ¼ ða1;a2; k1cosðd1Þ; k1sinðd1Þ; . . . ; kkcosðdkÞ; kksinðdkÞÞ|;
where a1 is the intercept, a2 is the slope of the trend model, k is the
amplitude of the seasonal model, d is the phase of the seasonal
model, f is the frequency and k is the number of harmonic terms.
In this study we use third order harmonics (k ¼ 3).

3.2.2. Serial autocorrelation correction with AR(1) model
We correct the autocorrelated error of each time series with the

first order AR (AR(1)) model:

yi ¼ x|i bi þ yi�1/þw; ði ¼ 2; . . . ; tÞ ð2Þ
where the temporal dependence is described by /, and w is white
noise. To examine structural change, the OLS-CUSUM and OLS-
MOSUM are applied to w. We will call these methods AR(1) OLS-
CUSUM and AR(1) OLS-MOSUM, respectively.

3.2.3. Spatio-temporal statistical model
When applying the linear regression model on each pixel time

series (t time steps) of a spatial neighborhood (with n pixels) of a
pixel, we have:

Y ¼ Xbþ u
Y ¼ ð~y1; . . . ; ~ytÞ|
u ¼ ð~u1; . . . ; ~utÞ|;
where ~yi contains the observations of n neighboring pixels. Y is the
matrix of the observations in space and time. ~ui contains the corre-
sponding errors of the neighborhood.

If the errors in u are spatially correlated, the spatial dependence
can be used to improve the time series analysis. We use a SAR
model to characterize the spatial correlations between the neigh-
boring pixels, as in

u ¼ Buþ v B ¼ qW; ð3Þ
where B is the matrix of parameters describing spatial correlations
between residuals. It is the spatial dependence parameter q multi-
plied by a weight matrix W. The spatial dependence parameter q



Fig. 3. Study area and example of validation data. Right: location of the Juara study area in Mato Grosso. Left: PRODES reported deforestation area plotted on Landsat5 image
in 2007 of the sample area.
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can be estimated with maximum likelihood. We used a 3 � 3 win-
dow. The W is filled with 1 for neighboring pixels and identical
time, and 0 otherwise. v is assumed to contain independent resid-
uals from the auto-regression. The model can be expressed as:

Y ¼ Xbþ ðI� qWÞ�1v; ð4Þ
of which the regression residuals v between time series are spa-
tially uncorrelated. To examine structural change, the OLS-CUSUM
and OLS-MOSUM are applied to v. We will call these methods
SAR OLS-CUSUM, and SAR OLS-MOSUM methods, respectively.
SAR and AR models were implemented using the R package spdep
(Bivand and Piras, 2015).
4. Study case

A 3-D spatio-temporal modeling case is developed in land cover
change with MODIS image time series. The study site is in Juara
(21,387 km2; Fig. 3, right), Mato Grosso, Brazil, where land cover
changes have been observed during the past decades. In order to
compare the speed between paralleled and unparalleled computa-
tion, a smaller subset of the Juara site (Fig. 3, left) was sampled for
the experiments, which consists of 150 (longitude)� 150 (lati-
tude)� 636 (time steps) pixels. From the false color Landsat image,
the urban area (brown1), vegetation area (green), and a river (dark
blue) can be observed. The study uses 12 years of the first two bands
of MODIS 09Q1 product, which are of 8-day temporal resolution,
250 m spatial resolution, and are atmospherically corrected
(Vermote et al., 2002). The study period is from the year 2000 to
the year 2012. We use vegetation index, EVI2 (Jiang et al., 2008) to
represent the land cover. The study only detects changes in the forest
1 For interpretation of color in Fig. 3, the reader is referred to the web version of
this article.
to guarantee that result can be validated with products from Amazo-
nian forest monitoring system from Brazils National Institute for
Space Research (INPE). The Amazonian forest monitoring systems
are developed by visually interpreting the satellite images at different
times. We compare the detected change with PRODES (INPE, 2015c;
Shimabukuro et al., 2012; Hansen et al., 2008) – a yearly cumulative
clear-cut deforestation inventory with 30 m Landsat data, DETER
(INPE, 2015b; Shimabukuro et al., 2012; Hansen et al., 2008) – a
half-monthly near real-time forest degradation and deforestation
monitoring system with 250 m MODIS data, and DEGRAD (INPE,
2015a) – a yearly cumulative forest degradation and deforestation
monitoring system with 30 m Landsat. In addition, Landsat5 imagery
are visually interpreted to assist the validation process.

4.1. Change modeling process

4.1.1. Data storage and pre-processing
The data were stored as a 3 dimensional array in SciDB, with

longitude, latitude, and time as dimensions. Digital numbers of
Band1 (red band), Band2 (near infrared band) and pixel QA (Qual-
ity Assurance) (USGS, 2014) are the attributes of the array. Then we
selected the study area and calculated the EVI2 (Jiang et al., 2008)
using the red and near infrared bands. At last, a basic filtering func-
tion is applied to remove the low quality pixels (i.e. one or more
bands that are of faulty data) based on the QA. The removed pixels
are interpolated with the median EVI2 of a 3� 3� 3 spatio-
temporal neighborhood. This simple interpolation method was
chosen because (1) more than 80% (3704 out of 22500 pixels) of
data are of good quality, (2) these low quality pixels are regularly
spread over space and time, (3) there are strong spatio-temporal
correlations within 3� 3� 3 neighborhood, and (4) the changes
remain over a period much longer than the temporal resolution.
More sophisticated interpolation methods (e.g. Kriging) can be
used, but are beyond the scope of this study.



Fig. 4. Comparison between different methods. Left: confusion matrix of detected changes in each validation category for each method. Right: Pontius producer’s accuracy for
each method.

232 M. Lu et al. / ISPRS Journal of Photogrammetry and Remote Sensing 117 (2016) 227–236
4.1.2. Change detection
The next step is to apply the original and extended BFAST model

to the spatio-temporal region to detect change. We set the moving
window size (h) of the MOSUM process to 0.15. The analysis was
carried out in R and parallelised with SciDB using r_exec.

4.1.3. Post-processing and result analysis
The results are returned as a list and is reconstructed to a 3-D

array in SciDB, with the longitude, latitude, and time as dimensions
to indicate the spatio-temporal location of breakpoints. The
changes can be classified based on the magnitude of the break-
points and the slopes of the trend before and after the breakpoints.
These properties of the changes (magnitude, the classes of
changes) are stored as attributes. The result array can be material-
ized in R for visualization and other analysis.

4.2. Results assessment

A forest mask was created from the PRODES forest-
deforestation map of the year 2000. The non-forested area before
the year 2000 were masked out for results validation. A validation
dataset was generated from the deforestation maps from PRODES,
and forest degradation maps from DEGRAD and DETER. The defor-
estation events that are indicated in PRODES, DETER and DEGRAD
are combined to validate the detected changes by EFP of BFAST and
the extended BFAST. The BFAST results are compared with the val-
idation dataset in space, and the detected changes are classified
into error matrix:

� True Positive (TP): the changed area that are indicated by BFAST
are changed area indicated by the validation dataset.
� True Negative (TN): the unchanged area that are indicated by
BFAST are unchanged area indicated by the validation dataset.
� False Negative (FN): the unchanged area that are indicated by
BFAST are changed area indicated by the validation dataset.
� False Positive (FP): the changed area that are indicated by BFAST
are unchanged area indicated by the validation dataset.

We use the producers accuracy from Pontius et al. (2008)
(referred to as Pontius producer’s accuracy) as a measure to assess
the results. The Pontius producer’s accuracy is defined as:

TPðTP þ FN þ FPÞ�1.
Pontius et al. (2008) defined this measure based on the observa-

tion that in land cover change analysis, the majority of the pixels
remain unchanged, which also applies for this study case. In this
case the large number of TN makes the results less assessable.This
measure thus takes out the TN, and gives a higher accuracy to the
statistical models. Eight models are evaluated here i.e. SAR-
MOSUM, SAR-CUSUM, MOSUM, CUSUM, AR SAR-CUSUM, AR SAR-
MOSUM, AR MOSUM, AR CUSUM.
4.3. Efficiency and scalability

The efficiency of using for loop, R array function apply(), and
r_exec are assessed by comparing the computation time between
three implementations:

1. implement BFAST with for loop in R (implementation 1),
2. apply BFAST on array with R function apply() in R (implemen-

tation 2),
3. scale implementation 2 with SciDB using r_exec (implementa-

tion 3).

5. Results

5.1. SAR integrated EFP

The highest producer’s accuracy is achieved with OLS-MOSUM
method and AR(1) OLS-MOSUM method (Fig. 4). OLS-MOSUM
has detected more TP than the other three methods. OLS-CUSUM
method detected less changes, as well as the least FP. Both the
SAR OLS-MOSUM and SAR OLS-CUSUMmethods have detected less
FP and less TP compared to their original pure time series methods.
The producer’s accuracy are higher for the original BFAST methods,
which are more sensitive to change. The higher significance level
(p-values) for declaring the structural change of a time series
resulted in higher producer’s accuracy. Integration of AR(1) model
yields to similar results as original BFAST.

Fig. 5 shows the map of agreement (TP, TN, FP and TP) detected
by different BFAST methods. The yellow and blue regions (TP, FP)
are the areas where BFAST methods indicated structural change
of a time series. It can be observed that the changes detected by
SAR integrated methods are more discrete and more spread out
than the original pixel based analysis. The green regions represent
the largest agreement class (TN), which are the constant forest
areas from 2000 to 2012, supported both by the validation dataset
as well as BFAST. The OLS-CUSUM test, SAR OLS-CUSUM test and
the OLS-MOSUM test all show the lower left region as being
slightly disturbed, but the SAR OLS-MOSUM test indicates many
small region of change (FP). The maps of AR(1) model are not
shown since the differences are not obvious.



Fig. 5. Spatial distribution of the different validation categories of detected breakpoints. Orange: FN, Blue: FP, Green: TN, Yellow: TP. The white space are the non-forestry
area before the year 2000. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.2. Efficiency and scalability

The result shows that the implementation 2 is much more effi-
cient than implementation 1, especially when the time series is
longer. It is about 2� n times faster than implementation 1, when
the length of one time series is n times longer than the other time
series. With 8 SciDB instances, implementation 3 turned out to be
about 4 times faster than implementation 2.

5.3. Reproducibility

The modeling process can be reproduced by executing the
scripts available at Github: scalable spatio-temporal BFAST.2 These
scripts cover the workflow from software installation to result vali-
dation. The spatio-temporal modeling approaches are written as R
scripts. The scalability is achieved through the combination of SciDB
and R using the r_exec plugin (see Section 2.4. Scaling the process
with SciDB and R). The main R scripts include:
2 https://github.com/ifgi/scalable-spatial-temporal-BFAST.
� SAR integrated EFP with R (R_SAR_efp).
� SAR integrated EFP with SciDBR (rexec_SAR_efp).
� Validation result reproduction (repro_SAR_efp).

We separate the reproduction process with ‘‘R_SAR_efp” and
‘‘rexec_SAR_efp”, respectively, for reproducing the change detec-
tion result with SciDB or only R. This separation – besides allowing
to compare the scalable and non-scalable processes – enables pro-
cessing small areas when R is sufficient. The scripts will reproduce
the results in Fig. 4 as long as the same data are used.

6. Discussion

6.1. Results of spatio-temporal modeling

6.1.1. Comparison between CUSUM and MOSUM
In this study, the OLS-MOSUM method outperformed the OLS-

CUSUM method. One possible reason is that when time series is
long, the OLS-CUSUM method neutralizes the fluctuations of resid-
uals and becomes less sensitive to change. The OLS-MOSUM

https://github.com/ifgi/scalable-spatial-temporal-BFAST


Fig. 6. Spatial and temporal dependence parameters. Left: histogram of the spatial
dependence parameter q in the SAR model (Eq. (3)), which has been applied on each
of the 3� 3 spatial region of time series. Right: histogram of the serial correlation
parameter (/) in the AR(1) model (Eq. (2)) of each time series.
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method uses only recent information and is not affected by the
length of the time series. Other statistical reasons that OLS-
CUSUM are not sensitive to some kinds of parameter changes can
be found in Chu et al. (1995). Chu et al. (1995) indicated that while
the performance of the OLS-MOSUM method is comparable with
the OLS-CUSUM method when there is a single structural change,
the OLS-MOSUM method performs better than the OLS-CUSUM
method when the parameter first changes into a new level and
then returns to the original level. This difference between the
OLS-CUSUM and the OLS-MOSUM methods can be evaluated with
the BP method, and may be used to distinguish between changes
that are resilient (e.g. forest fire), and changes that are non-
reversible (e.g. urbanization). On the other hand, with less observa-
tions, the OLS-MOSUMmethod is less resistant to noise. The deter-
mination of the moving window size is thus important. This
window size can be calibrated. Note that the calibration is compu-
tationally expensive because the boundary-crossing probability for
each window size is different.
6.1.2. Extended BFAST
The spatial dependence parameter q of the SAR model (Eq. (3))

has a mean of 0.83 (0 indicates no correlation and 1 indicates per-
fect correlation) (standard deviation (SD) 0.06). The distribution of
q (Fig. 6, left) suggests strong spatial correlation within almost all
the 3� 3 spatial regions. The serial dependence parameter / of the
AR(1) model (Eq. (2)) has a mean of 0.06 (SD 0.1) (a median of
0.038). The distribution of / (Fig. 6) shows that most time series
have weak serial correlation. Only 10% of / are higher than 0.2,
and suggests mild AR(1) serial correlation. This might be due to
the time series of the land cover in this study case, such as tropical
forest, urban area, and agricultural area, are noisy over a long time
period after removing the trend and seasonality. The BFAST and
extended BFAST can be applied on more strongly autocorrelated
time series for further evaluation.

Integration of the spatial model into the temporal process (Eq.
(4)) smooths the regression residuals over a region. The effect of
spatial neighbors in the change modeling process depends on the
amount of spatial autocorrelation. In this study case, where strong
spatial autocorrelations are present, the change is mainly the
change in the correlation of the spatial neighborhood. Thus, the
SAR integrated model may be more resistant to temporal noise.
Changes may however go undetected when the spatial correlation
remains unchanged, e.g. a patch of forest cells are clear cut and
recovered simultaneously over a region. In this case, the border
between deforestation and forest may be detected. This explains
the results that the changes detected by SAR integrated model
are more scattered. The residuals of the pure time series analysis
and the residuals of the SAR integrated method can be added to
include both the long-term temporal effects (e.g. drought), and
the spatial effects for change detection.

The best result is achieved with both OLS-MOSUM and OLS-
MOSUMwith AR(1) correction. This result suggests that in this for-
est degradation and deforestation case, BFAST is robust against
mild serial correlation and spatial correlation. However, the poten-
tial of integrating spatial information to improve the pure time ser-
ies analysis will need to be further investigated (Cressie and Wikle,
2011).

In the extended BFAST, the EFP models fit a season-trend model
at once. This extension is very similar as the near-real time moni-
toring approach presented by Verbesselt et al. (2012). The differ in
the aspect the monitoring approach has been designed to detect
change at the end of a time series (i.e. monitoring) while the BFAST
and the extended version are able to detect changes (i.e. break-
points) within the time series. The season-trend model is necessary
for SAR integrated time series analysis in that the separate
detrending and deseasonalization makes the time series less
consistent.

6.1.3. Uncertainty in validation dataset
The PRODES, DETER, and DEGRAD systems from INPE are devel-

oped with manual image interpretation. The identification of forest
degradation or deforestation is done by comparing a land cover
classification map with Landsat or MODIS images. The results are
randomly validated in field. However, the processes are unrepro-
ducible, and the precision of the interpretation is hard to assess.
Simulated datasets could be used for a more rigorous validation
process. In addition, the resolution of the data that is used is coar-
ser than the PRODES and DEGRAD products, and is likely to miss
information about changes. The use of higher resolution data can
further contribute to the validation process.

6.2. Array abstraction for data analysis and scalability

Current studies apply BFAST on a RasterStack (e.g. the BfastSpa-
tial package published on GitHub (Dutrieux et al., 2014)), which
firstly constructs a time series from each raster pixel and then
computes BFAST on each time series. This method enables parallel
computation and visualization of results as raster layers. One lim-
itation is that the raster is of 2-D, and the 3-D RasterStack is not
flexible. For example, it is difficult to perform joined spatio-
temporal analysis on 3-D partitions, only two-stage analysis can
be performed. Multidimensional arrays facilitate implementing of
higher dimensionality analysis (i.e. 3-D and beyond). In addition,
the BFAST outputs can only be stored as values of each raster layer,
which is inconvenient to have time as an additional dimension,
since only one output variable (e.g. magnitude) can be stored;
however, it is often useful to have a 3-D spatio-temporal array with
all the necessary variables (e.g. significance of the trend, change
magnitude, types of changes), so that the change coefficients at a
certain time can be selected, analyzed and visualized. We store
the desired variables as attributes of a 3-D result array (SciDB
array) with space and time as dimensions, from where different
variables can be stored and accessed. Lastly, SciDB array can be
sparse, which is a more efficient way of storing sparse data (e.g.
when only information at pixels with breakpoints is of interest).

In this study, the data analysis was entirely written in R, and
scales in a simple way when using SciDB. The consistent data
structure in SciDB and R make the process clear and relatively sim-
ple. From data preparation to result visualization, the data struc-
ture remains constant. The array abstraction facilitates the
selection of particular spatio-temporal regions to apply statistical
algorithms. Filtering and other sophisticated spatio-temporal data
analysis methods can conveniently be applied to array partitions.
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The relationships between the spatio-temporal neighbors are nat-
urally described by a weight matrix, and can be applied directly on
selected regions with spatio-temporal statistical algorithms that
are represented as linear models.

Instead of loading files and reconstructing the data structure
(e.g. forming a time series from satellite imagery), the arrays are
stored in the DMAS and can be used directly for data processing
and analysis. To achieve the most efficient computation distribu-
tion with SciDB, the chunk size can be optimized. There are several
computationally intensive processes in this modeling process:

1. The SAR model (Eq. (4)) estimates 72 regression parameters at
once for each pixel neighborhood (intercept, trend, and six har-
monic parameter for each pixel, with 9 pixels in one region
(8� 9 ¼ 72)),

2. The BP method for timing and identifying the number of the
breakpoints in time series include dynamic insertion of break-
points to minimize the BIC and SSR.

3. The simulation of the boundary-crossing probability of OLS-
MOSUM for different moving window sizes when choosing
the most suitable window size.

These processes all become feasible with the scalability of
DMAS. This study used 8 worker node instances of SciDB. Previous
experiments (Câmara et al., 2014) suggest the speed of computation
improve linearly with additional instances. A more powerful DMAS
setupmay allow for global scale computation, and realize near real-
time large-scale change monitoring (Verbesselt et al., 2012).

Apart from using arrays in conjunction with an array database,
the array itself is advantageous for parallel computation, which is
supported in R. For example, the raster package supports parallel
computing with the focal function, where the analysis are per-
formed in each focal zone; function RasterEngine in package spa-
tial.tools further extends the focal function of the raster package
to 3-D and implements focal function in chunks (as an array of ras-
ter brick instead of a raster layer). The chunk of an array is suitable
to be a processing unit. For example, to model a regional spatio-
temporal phenomenon, each region can be put into a chunk and
the process in each region can be parallelized.

This study is a first step towards a more long-term goal, which
is to publish and communicate scientific large-scale earth observa-
tion studies in a completely transparent and reproducible fashion.
One requirement for this is the use of open source software and
scalable DMAS, which led to the choices for R and SciDB in this
study. In addition to the R scripts provided here, this would require
simple ways to install and operate array databases by third parties.

7. Conclusions

This paper discusses how array as an abstract data type can help
modeling change. The array structure stores and analyzes spatio-
temporal data as their natural form, which provides a clean and
communicable process for data preparing, spatio-temporal change
modeling and analyzing results. This study illustrates this capabil-
ity of array structure by evaluating BFAST functions and extending
BFAST from pixel-based time series analysis to region-based
spatio-temporal analysis where the data are spatially or tempo-
rally correlated, and by storing BFAST outputs as a 3-D spatio-
temporal array for post-processing and further analysis.

The study case was developed in forest degradation and defor-
estation modeling, which contribute directly to forest management
and environmental conservation. These methods are subject to fur-
ther tests with other datasets of higher spatial resolution or simu-
lated datasets, to better control the validation process. The study is
extensible and the methods can be the basis of a wide range of
domains such as ecological, hydrological, or climate change model-
ing. In the next step the study will be extended to a higher dimen-
sionality, e.g. by modeling change directly from multiple spectral
bands.
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