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"A ciência pode classificar e nomear os órgãos de um sabiá 
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nos encantos de um sabiá. 

Quem acumula muita informação perde o condão de adivinhar: divinare. 

Os sabiás divinam." 

(Manoel de Barros) 
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ABSTRACT 

Brazil has an important role in the world in terms of food production and the 
largest native forest, providing essential environmental services for the 
planet and humanity. However, this highlights the challenge of creating an 
economic development model that takes into account the environmental 
conservation. Brazil has already demonstrated successful experiences in 
Amazon deforestation reduction, but other biomes of great environmental 
importance, such as the Cerrado, has been under great pressure of 
agricultural expansion. Satellite image time series can be used to derive 
phenological information of vegetation, and considering the high 
heterogeneity of crop types and their respective planting calendars in Brazil, 
is essential for crop classification and monitoring. Our hypothesis in this 
thesis is that phenological information can be extracted from Landsat-like 
dense image time series, allowing the development of a method for 
agriculture mapping with more detail. We tested the integration of different 
satellite, such as Landsat-8, Landsat-7 and CBERS-4, combined with 
different smoothing techniques, to generate EVI (Enhanced Vegetation 
Index) image time series at high frequency in order to extract the 
phenological metrics. A hierarchical classification approach using the 
Random Forest algorithm was developed to produce detailed agricultural 
maps. The classification results are promising (higher than 80% of overall 
accuracy) and showed the feasibility of applying the method on a large scale 
and over a longer period of time for the Cerrado biome. In addition, the 
phenological information obtained by the method showed a potential to be 
used in the understanding of different agricultural practices adopted by 
farmers in property level. 

Keywords: big-data, time-series analysis, agricultural land use 
classification, multi-sensor, remote sensing.  
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CLASSIFICAÇÃO DE ÁREAS AGRÍCOLAS BASEADA EM 
INFORMAÇÕES FENOLÓGICAS DE SÉRIES TEMPORAIS 

DE IMAGENS LANDSAT-LIKE NO CERRADO BRASILEIRO 
 

RESUMO 

O Brasil tem um papel importante no mundo em termos de produção de 
alimentos e a maior floresta nativa, fornecendo serviços ambientais 
essenciais para o planeta e para a humanidade. No entanto, isso destaca 
o desafio de criar um modelo de desenvolvimento econômico que leve 
em consideração a conservação ambiental. O Brasil já demonstrou 
experiências bem-sucedidas na redução do desmatamento da 
Amazônia, mas outros biomas de grande importância ambiental, como o 
Cerrado, estão sob grande pressão de expansão agrícola. Séries 
temporais de imagens de satélite podem ser usadas para derivar 
informações fenológicas da vegetação. Considerando a diversidade de 
culturas agrícolas e seus respectivos calendários de plantio no Brasil, 
essas informações são essenciais para a classificação e monitoramento 
agrícola. Nossa hipótese é que informações fenológicas podem ser 
extraídas de séries temporais de imagens de resolução espacial Landsat-
like, permitindo o desenvolvimento de método para mapeamento 
detalhado da agricultura. Testamos a integração de diferentes satélites, 
como Landsat-8, Landsat-7 e CBERS-4, combinados com diferentes 
técnicas de suavização para gerar séries temporais de imagem EVI 
(Enhanced Vegetation Index) em alta frequência e extrair as métricas 
fenológicas. Uma abordagem de classificação hierárquica usando o 
algoritmo Random Forest foi aplicada para produzir os mapas. Os 
resultados da classificação são promissores (acima de 80% da acurácia) 
e mostraram a viabilidade de aplicar o método em larga escala e por um 
longo período para o Bioma Cerrado. Além disso, as informações 
fenológicas mostraram potencial para serem utilizadas na compreensão 
de diferentes práticas agrícolas adotadas pelos agricultores no Cerrado, 
em escala de propriedade. 

Palavras-chave: big data, análise de séries temporais, classificação de 
uso agrícola, multi-sensor, sensoriamento remoto. 
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1 INTRODUCTION 

The Brazilian agribusiness represents around 22.5% of the total Gross 

Domestic Product (GDP) of the country (CEPEA-USP/CNA, 2015). Even 

though Brazil’s GDP retracted 3.8% in 2015 due to both recession and 

political unrest, the agricultural sector’s GDP increased by 1.8% and was 

the only sector to report any job growth (SPERA, 2017; LEWIS, 2016; 

MAPA, 2016). At the same time, Brazil draws global attention as a top 

emitter of carbon dioxide (CO²) from land-use change and deforestation, 

mostly due to agriculture expansion (GALFORD et al., 2013), which causes 

an impact on ecosystem services, biodiversity, water cycle and the carbon 

cycle (FEARNSIDE, 2006). 

However, the agricultural scenario in Brazil has changed considerably in the 

last decades, especially with respect to crop-management practices. We 

can understand the context of these changes by some studies in the 

literature that point out that the adoption of management practices can 

increase productivity through agricultural intensification (CONWAY; 

TOENNIESSEN, 1999; TILMAN et al. 2002; GODFRAY et al. 2010). 

Agriculture can be intensified by the expansion to new planting areas or 

increasing productivity in consolidated areas, improving some crop-

management practices such as irrigation, no-tillage and the adoption of 

double-cropping system (OLIVEIRA et al., 2014). One important case that 

illustrates this scenario in Brazil is that deforestation rates in Mato Grosso 

state decreased 90% between 2004 and 2014 (INPE, 2017) whereas crop 

production continued to increase thanks to the adoption of intensive 

agricultural practices (IBGE, 2016) (ARVOR et al., 2017). On the other 

hand, in the region of Matopiba1, known as Brazil’s ‘‘Last Agricultural 

Frontier’’, where occurred the most clearing of natural vegetation on the 

                                                      
 

1 In May of 2015, 337 municipalities in the north-eastern Cerrado states of Maranhão, Tocantins, 

Piauí, and Bahia were officially designated ‘‘Matopiba’’ by the Brazilian government, and a bill 

was ratified committing the government to investing in infrastructure, agricultural technology, and 

the expansion of the rural middle class. Matopiba is the newest and potentially last agricultural 

frontier region within the Cerrado (SPERA et al., 2017). 
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Cerrado biome during the past decade, 85% of the production areas are still 

based on soy monoculture (SPERA et al., 2017). 

Therefore, agriculture mapping and monitoring is important to understand 

the intensification process and its evolution over time, considering the 

different crop-management practices. Additionally, it enables the generation 

of fast and accurate information, which is strategic and crucial for policies 

and for decision making in the investment market. The availability of this 

information is also important to support food security programs, preventing 

food shortages and enabling transparency in the agricultural market. 

Given that, the adoption of new crop-management practices currently 

represents the most promising alternative to increase crop production with 

limited impacts on the natural environment. Monitoring procedures to 

evaluate the implementation and communication to policy makers and 

society are necessary to subsidise policies, such as the Low Carbon 

Agriculture Plan (ABC Plan) (MAPA, 2012), which is a policy to reduce 

agricultural emissions.  

Yet, mapping agriculture in a regional-scale allows the estimation of 

productivity on a more accurate way. Once taking into account the capacity 

of adaptations that the farmers can have in response to variations on 

climatic conditions and incentive on crop production, this information is 

important to predict the impact of agricultural policies and long-term 

economic effects in agriculture (ASSUNÇÃO; CHEIN, 2009).  

The potential use of remotely sensed data from Earth Observation (EO) 

satellites to map and monitor agriculture is mainly due to the most cost-

effective means for gathering spatially explicit, timely, detailed and reliable 

information about vegetation over large land areas with high revisit 

frequency (ATZBERGER et al., 2013). Exploring the temporal frequency of 

satellite data allows finding relations between the spectral information and 

the phenological aspects of different crop types (REED et al., 1994). This is 

essential for crop classification, since there is a high similarity between 

different crops and it is a complex task to discriminate them (PEÑA-



3 
 

BARRAGÁN et al., 2011). Besides mapping, phenological information of 

crops is also important for many other applications, such as estimation of 

net primary production (KIMBALLA et al., 2004; TRAMONTANA et al., 

2015), decision-making about water and fertilizer supply (DINGKUHN; LE 

GAL, 1996; SAKAMOTO et al., 2005; ZHENG et al., 2015). Furthermore, a 

resolution of Brazil´s Central Bank (Resolution 4427 of June 25, 20152) was 

recently implemented authorizing the use of remote sensing for rural credit 

operations inspection purposes. Among the requirements for compliance 

with this resolution is that the method must allow for crop type identification 

and its development in each phenological phase, what highlights the 

importance of deriving phenological information from agricultural crops 

through remote sensing techniques. 

With over half of Brazil’s agricultural land falling within the Cerrado biome 

limits, the consequent land clearing in this region has been central to the 

development and strength of the country’s agricultural sector (SPERA, 

2017). The Cerrado biome, also known as the Brazilian Savannah, is the 

second larger biome in Brazil, after Amazon, with an extent of more than 2 

million km² (MMA, 2016). Considered as a global biodiversity hotspot, the 

Cerrado also provides environmental services of global importance, such 

as carbon storage and climate regulation (ALCAMO, J.; HASSAN, R, 2003). 

A weak land conservation status has led to large-scale conversions from 

natural to agricultural land that already affected more than 40% of the 

Cerrado, which is likely to aggravate in the future (FERREIRA et al., 2012; 

SANO et al., 2010). The intense scenario of agricultural expansion falls 

under the need for the development of accurate methods for mapping the 

distribution of agricultural areas and its evolution over time, so that we can 

ensure a sustainable development of agriculture and the preservation of the 

biome.  

                                                      
 

2 http://www.bcb.gov.br/pre/normativos/res/2015/pdf/res_4427_v1_O.pdf 
 

http://www.bcb.gov.br/pre/normativos/res/2015/pdf/res_4427_v1_O.pdf
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Recently, TerraClass project was implemented in order to map the land use 

in deforested areas and understand these spatial patterns of land use and 

land cover, firstly in the Amazon biome (ALMEIDA et al., 2016), and recently 

in the Cerrado (INPE, 2017). Different classes were considered, and 

specifically agriculture was mapped at intermediate thematic detail, 

including annual crops, perennial crops (which includes coffee, citrus, and 

sugarcane) and planted forest. However, although the generated maps 

have wide applicability in understanding the key phenomena and of 

landscape transformation processes constraints of biomes (FONSECA-

MORELLO, 2015; ADAMI et al, 2015; RISSO et al, 2012), the methodology 

still relies on manual procedures for visual interpretation, which involves 

subjectivity, as well as a lot of effort and time for execution. The 

methodology used on TerraClass for mapping annual agriculture 

(COUTINHO et al., 2013) is limited to 250 meters of spatial resolution and 

depends on the definition of thresholds that need to be manually defined for 

each region. Although there is a crop calendar recommended by some 

institutions and even required by some financial agencies, farmers do not 

follow it strictly. So, approaches based on thresholds definition with fixed 

time intervals do not work well, once they can vary through different regions. 

Mapping croplands using phenological information derived from coarse 

resolution satellite image time series has been extensively studied 

(SAKAMOTO et al., 2005; WARDLOW et al, 2007; RUDDORF et al, 2010; 

ESQUERDO et al, 2011; ARVOR et al, 2011; COUTINHO et al, 2013; 

BORGES; SANO, 2014). The Advanced Very High Resolution Radiometer 

(AVHRR), and the Moderate Resolution Imaging Spectroradiometer 

(MODIS), provide high temporal resolution images with wide coverage, and 

have been essential in the development of these studies. However, their 

moderate spatial resolution (250 – 1000 meters) limits the development of 

spatially accurate agricultural maps due to the spectral mixture of different 

targets, and also do not allow the detection of small fields, being thus 

restricted to regions where agriculture is practiced in large scale. This is a 

major problem, especially for regions where crop fields are typically small, 

diverse in shapes, and management approaches vary, which deem this 
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approaches based on coarse resolution data ineffective (ZHANG et al., 

2016).   

The free data police for Landsat (WULDER et al., 2012), CBERS-4, and 

Sentinel images as well as the advances on methodologies of higher 

computational performance have provide a propitious environment to work 

with image time series analysis and intensive data technologies. It´s also 

possible to combine data acquired from sensors onboard Landsat series, 

such as the Enhanced Thematic Mapper (ETM+) and Operational Land 

Imager (OLI), which has provided improvements on the newly collection 

management of the Landsat archive available on the U.S. Geological 

Survey (USGS) Earth Resources Observation and Science (EROS) Center 

(USGS, 2016; GERACE et al., 2017; MICIJEVIC et al., 2016). These 

improvements produced a tiered collection of consistently geolocated and 

radiometrically calibrated products that are suitable for time series analyses.  

The scientific community has been widely working on land cover and land 

use mapping using Landsat-based approaches (MULLER et al., 2015; 

RUFIN et al., 2015; ZHENG et al, 2015; PEÑA et al, 2015; PAN et al, 2015). 

Even though, there are still many challenges in mapping agricultural lands 

with higher spatial resolution images. Higher spatial resolution sensors, 

such those onboard Landsat satellite, do not have sufficient temporal 

resolution to detect all typical short variations in agricultural areas. 

Since the Landsat-8 orbit is 8 days apart from the Landsat 7 one, these two 

sensors together provide 8-day repeatable observations. However, due to 

the fact that ETM+ data had been degraded by the Scan Line Corrector 

(SLC)-off gaps, there is less wall-to-wall data available between 2012 (the 

end of Landsat-5 TM lifetime) and 2013 (Landsat-8 launching). Some 

methods have been developed to reconstruct the missing information 

generating smoothed and gap-filled time series of higher spatial resolution 

data (SHEN et al., 2015; SCHIEWDER et al., 2016; MARUJO et al., 2017). 

But there are still problems for mapping agricultural lands with high detailed 

information about cropping systems and crop types. There is also a 

possibility of combining data from other satellite sensors, such as MUX 
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(Multispectral Camera) onboard CBERS-4 (China Brazil Earth Resources 

Satellite) to generate higher temporal resolution (i.e., 8 days) satellite image 

time series, what we are calling dense satellite image time series. 

Within this context, the objective of this thesis is to develop, describe and 

assess a method based on phenological metrics derived from dense 

Landsat-like image time series to classify agricultural land use in the 

Cerrado biome. To develop this work, we assume the hypothesis that 

phenological metrics from high-spatial resolution image dense time series 

makes it possible to have progress toward more refined agricultural land 

classification and with accuracies higher than the average from the recent 

literature (> 80%). 

To reach this objective, the following set of tasks will be developed: 

• Investigate noise removal in Landsat-8 OLI time series using 

CBERS-4 MUX data to improve a crop classification method based 

on phenological features; 

• Evaluate different time series smoothing algorithms for agricultural 

use discrimination; 

• Integrate Landsat-8 OLI and Landsat-7 ETM+ data to generate a 

dense Landsat-like image time series; 

• Explore Landsat based phenological metrics to analyze the major 

crop management practices in the Cerrado biome. 

 

1.1. Document Organization 

The methodology proposed in this thesis to classify the agricultural land is 

complex and involves many steps of processing to choose the adequate 

image processing procedures. Therefore, we organized the thesis by 

describing the experiments that describe each step of the methodology in 

chapters. These experiments are based on case studies. Figure 1.1 shows 
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an overview of the methodology and how we organized the chapters to 

answer specific questions about the methodology. The chapters are based 

on articles, which were published in International Journals and 

Conferences, except Chapter 5, which is being prepared for submission. 

 

Figure 1.1 – Overview of the general methodology, specific objectives of the thesis 
and the respective linked chapters. 

 

In Chapter 2, we present the experiment that investigates the construction 

of dense Landsat time series, taking advantage of the overlapping area 

between two adjacent Landsat scenes (LUIZ et al., 2015). Afterwards, 

phenological metrics (phenometrics) derived from Enhanced Vegetation 

Index (EVI) time series are used to classify agricultural areas in a region of 

the Brazilian Cerrado. EVI was chosen because it highlights the green 

vegetation canopy, taking into account the background and atmospheric 

effects. We used a simple linear interpolation for removing outliers and 

noise in the time series. The phenometrics were obtained by the TIMESAT 

software (JÖNSSON; EKLUNDH, 2002; 2004), since it has been reported 

as a promising strategy for classifying agricultural areas (BORGES; SANO, 

2014; TOMÁS et al., 2015). The following classes were considered in this 

study: Annual Crop, Semi-Perennial Crop, Perennial Crop and Planted 
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Forestry, the same classes described in the survey Municipal Agricultural 

Production (PAM) produced by the Brazilian Institute of Geography and 

Statistics (IBGE, 2016). The high accuracies achieved on this experiment 

motivated us to keep working with the phenological metrics derived from 

dense image time series. But as this methodology had the dependence of 

overlapping scenes, we still needed to find a way to expand it for larger 

areas, taking advantage of other sensors such as CBERS-4 MUX or even 

sensors from the Landsat family. 

In this way, in Chapter 3 we investigated a Landsat-8 OLI time series noise 

removal method, using CBERS-4 MUX data to improve the image time 

series temporal resolution and consequently the crop classification with the 

phenological metrics. An algorithm was built to look for the nearest MUX 

image for each Landsat image, based on user defined time span. The 

algorithm checks for cloud contaminated pixels on the Landsat time series 

using Fmask (ZHU; WOODCOCK, 2012) and replaces the contaminated 

pixels to build the integrated time series (Landsat-8 OLI + CBERS-4 MUX). 

In this experiment, we evaluate the use of EVI and also the Normalized 

Difference Vegetation Index (NDVI) to derive phenometrics. The 

phenometrics were extracted from the time series samples by different 

methods (original time series and multi sensor time series, with and without 

filtering) and subjected to data mining process based on Random Forest 

classification (BREIMAN, 2001). We used TIMESAT software for the 

phenometrics extraction, and the Double Logistic function was selected for 

the time series parameterization, based on the recommendation of Borges 

and Sano (2014). However, this recommendation was done based on an 

experiment using MODIS image time series. 

Thus, in Chapter 4 we tested the three different time series smoothing 

methods implemented in TIMESAT software – Savitzky-Golay (SG), 

asymmetric Gaussian function (AG) and double-logistic function (DL) 

(JÖNSSON; EKLUNDH, 2002, 2004). We also evaluate their impact on the 

agricultural land use classification, in order to recommend a smoothing 

method for the phenometrics extraction from Landsat-like image time series, 

using TIMESAT. 
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Finally, in Chapter 5, we described a complete methodology developed in 

this thesis based on phenometrics derived from dense satellite image time 

series to classify agricultural land use in three different regions in the 

Cerrado biome: northeast of São Paulo State, west of Bahia State and 

southeast of Mato Grosso State. As the results using CBERS-4 data were 

not satisfactory, we used Landsat Enhanced Thematic Mapper (L7/ETM+) 

and Operational Land Imager (L8/OLI) sensors, applying a weighted 

ensemble of Radial Basis Function (RBF) convolution filters as a kernel 

smoother to fill data gaps such as cloud cover and Scan Line Corrector 

(SLC)-off data (SCHWIEDER et al., 2016). Through this approach, we 

created a dense Enhanced Vegetation Index (EVI) data cube with an 8-day 

temporal resolution. We used only EVI also because the results of Chapter 

4 showed that with this vegetation index we could reach better results than 

using NDVI. We used a classification approach based on a hierarchical 

scheme with four levels, from land covers (pasture, planted forest, annual 

crop, semi-perennial crop and natural vegetation) to crop type level.  

In Chapter 6, we present conclusions and future work. 

 

 

 

 

 

 

 

 

2 USING LANDSAT 8 IMAGE TIME SERIES FOR CROP MAPPING IN 

CASA BRANCA MUNICIPALITY, BRAZIL3 

                                                      
 

3 This chapter is based on the paper: BENDINI, H. N.; SANCHES, I. D. A.; KÖRTING, T. S.; 

FONSECA, L. M. G.; LUIZ, A. J. B.; FORMAGGIO, A. R. Using Landsat 8 Image Time Series for 
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2.1. Introduction 

Agriculture has significant participation in the Brazilian economy; it is the 

main responsible for the positive trade balance of the country. Given the 

high availability of arable land, and taking into account the growing demand 

for food in the world, Brazil has been consolidating as a big player on the 

world agricultural scenario. On the other hand, important biomes in the 

country have essential ecological functions for humanity, and therefore must 

be preserved. In this way, agricultural mapping is strategic for offering 

subsidies to generate information as estimates of acreage and production, 

as well as allowing a better understanding of the distribution of croplands, 

and its impact on the environment. Remote sensing is an important tool for 

its ability to generate information on large scale in a cost-effective way. With 

advances in data processing and storage technologies, and the availability 

of long-term image series, remote sensing is undergoing a paradigm shift, 

in which time series techniques stand out for allowing taking into account 

seasonal variations of the analysed target. This approach is useful for 

vegetation studies, especially in agricultural areas, since vegetation cover 

is quite dynamic in time, and the ability to capture these variations is 

essential to discriminate different types of crops, through its phenological 

characteristics. Until now, only time series of vegetation indices like NDVI 

or EVI using MODIS data were well explored for this purpose (SAKAMOTO 

et al., 2005; WARDLOW et al., 2007; ESQUERDO et al., 2011; ARVOR et 

al., 2011; RISSO et al., 2012; KÖRTING, 2013; COUTINHO et al., 2013; 

BORGES; SANO, 2014; TOMÁS et al., 2015; NEVES et al., 2016). 

However, there is still a demand for more detailed maps, which are possible 

from time series with finer spatial resolutions, such as Landsat-like images 

(ZHENG et al., 2015; PEÑA et al., 2015; PAN et al., 2015). In this context, 

the objective of this study is to employ phenological metrics obtained by 

                                                      
 

Crop Mapping in Casa Branca Municipality, Brazil. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 XXIII 

ISPRS Congress, 12–19 July 2016, Prague, Czech Republic. 
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time series of vegetation indices from Landsat-8 OLI for the classification of 

agricultural land use in the municipality of Casa Branca, located in the 

Cerrado biome in the state of São Paulo, Brazil. 

2.2. Materials and Methods 

2.2.1. Study area 

We conducted our study in the south of Casa Branca municipality, in state 

of São Paulo, Brazil (Figure 2.1). Such region is located in an overlapping 

area of two adjacent Landsat-8 scenes (219/75 and 220/75), providing a 

temporal resolution of 8 days as suggested by Luiz et al. (LUIZ et al., 2015).  

Figure 2.1 – False color (bands 5, 6 and 4 in red, green and blue respectively) 
Landsat imagery of the study area (note the overlapping area of two adjacent 
scenes 219/75 and 220/75). 

 

 

Casa Branca city has a tropical wet and dry climate (Aw, according to the 

Köppen Climate Classification System) with average annual temperature of 

21.5º C and a seasonal rainfall pattern with most rainfall occurring from 
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October to March. The average annual precipitation is 109.18 mm 

(CEPAGRI/UNICAMP, 2016).  

In this region, farmers grow a variety of crops along all the year. Major field 

crops in this area are sugarcane, corn, bean, potato, soybean, peanuts, 

sorghum and cassava. There is also a significant production of citrus, 

mango, coffee, rubber and eucalyptus (IBGE, 2016). Farmers grow crops in 

double cropping systems and even in triple cropping systems, mainly on the 

irrigated areas. The usual planting crop dates is from October to December 

and harvesting from February to April, but planting crops in late fall (May – 

July) and harvest in the next spring is also observed, especially in the 

irrigated areas. 

2.2.2. Remotely sensed data 

A total of 46 scenes of Landsat-8 OLI (Path 219 and 220/ Row 75) between 

July 2014 (Day of year – DOY 206)  and July 2015 (DOY 209) were obtained 

at the US Geological Survey platform (USGS) Earth Resources Observation 

and Science (EROS) Center Science Processing Architecture (ESPA), 

which are provided with geometric correction level 1 (L1T) and converted to 

surface reflectance by the algorithm of atmospheric correction LEDAPS 

(Landsat Ecosystem Disturbance Adaptive Processing) (MASEK et al., 

2006). We then generate EVI (Equation 2.1) (HUETE et al., 2002) layers for 

each image.  

EVI =
NIR−R

NIR+(6∗R−7.5∗B)+1
                      (2.1) 

where  NIR = near-infrared surface reflectance band (band 5) 

R =  red surface reflectance band (band 4) 

B =  blue surface reflectance band (band 2) 

EVI was chosen because it´s capacity for highlighting the spectral response 

related to green vegetation canopy, taking into account the background and 

atmospheric effects.  
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2.2.3. Removal of outliers and null values 

No cloud free images were identified in November, February and March. 

We applied a simple linear interpolation for removal of outliers and null 

values (Equation 2.2).  

𝑥𝑡 =
𝑥𝑡−1+𝑥𝑡+1

2
                       (2.2) 

where  𝑥𝑡 = an EVI observation of the time series at time 𝑡 

              𝑥𝑡−1 = an observation at time 𝑡 − 1 

  𝑥𝑡+1 =  at time 𝑡 + 1 

𝑥𝑡 observation is replaced by the average of 𝑥𝑡−1 and 𝑥𝑡+1 if 𝑥𝑡 is less than 

0,01. This method, however, is not capable of removing consecutive 

outliers. After this, we also smoothed the time series considering the double 

logistic filter (ZHANG et al., 2003; JÖNSSON; EKLUNDH, 2004). This 

function is recommended for smoothing image time series on cropland 

areas in the Brazilian Cerrado (BORGES; SANO, 2014).  

2.2.4. Seasonal data extraction 

Phenological metrics in EVI time series were obtained by the TIMESAT 

software (3.2 version), where seasonal data are extracted for each of the 

growing seasons of the central year (Figure 2.2). During a period of n years 

there may be n – 1 full seasons together with two fractions of a season in 

the beginning and end of the time series. So, to extract seasonality 

parameters from one year of data the time series has been duplicated to 

span three years, as recommended by Jönsson and Eklundh (2015). Figure 

2.2 shows the schema of the seasonality parameters generated by 

TIMESAT. In this work we assume that the seasonality parameters are the 

same of phenological metrics. The time for the beginning of season (a), or 

start of the season (sos), and the end of season (eos) (b) is the time for 

which the left and right edge, respectively, has increased to a defined level 

(often a certain fraction of the seasonal amplitude) measured from the 

minimum level on the corresponding side. The length of the season (c) is 
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the time from the start to the end of the season. Base value (d) is given as 

the average of the left and right minimum values. The middle of season (e) 

is computed as the mean value of the times for which, respectively, the left 

edge has increased to the 80 % level and the right edge has decreased to 

the 80 % level. 

Figure 2.2 – Some of the seasonality parameters generated by TIMESAT: (a) 
beginning of season, (b) end of season, (c) length of season, (d) base value, (e) 
time of middle of season, (f) maximum value, (g) amplitude, (h) small integrated 
value, (h+i) large integrated value. 

 

Source: Jönsson and Eklundh (2015). 

The maximum value (f), or the peak of phenological cycle, is the largest data 

value for the fitted function during the season. The seasonal amplitude (g) 

is difference between the maximum value and the base level. The left 

derivative is calculated as the ratio of the difference between the left 20% 

and 80% levels and the corresponding time difference, and the right 

derivative (i.e. the rate of decrease at the end of the season) is the absolute 

value of the ratio of the difference between the right 20% and 80% levels 

and the corresponding time difference. The rate of decrease is thus given 

as a positive quantity. Large seasonal integral (h+i) is integral of the function 

describing the season from the season start to the season end. And the 

small seasonal integral (h) is the integral of the difference between the 

function describing the season and the base level from season start to 
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season end (JÖNSSON; EKLUNDH, 2015). For more details see Jönsson 

and Eklundh (2002, 2004). 

2.2.5. Training and validation data 

Field campaigns were carried out for collecting training samples, totalling 

16,243 pixels. The classes considered were Annual Crop (potato and corn, 

on a double crop system), Semi-Perennial Crop (sugarcane and cassava), 

Perennial Crop (citrus, mango and rubber) and Planted Forestry 

(eucalyptus). The polygons that represent each class were directly digitized 

over the Landsat-8 images.  

2.2.6. Random Forest classification 

The variables obtained by TIMESAT were subjected to data mining using 

the Random Forest algorithm (BREIMAN, 2001). This algorithm is a 

classification technique in which the data set is randomly divided in several 

subsets of smaller size by means of applying bootstrap, and from each 

subset is developed a decision tree. All trees contribute to the classification 

of the object under study, by voting on which class the target attribute must 

belong. Random Forest algorithm has been widely used in remote sensing 

(CLARK et al, 2010; MÜLLER et al, 2015; PEÑA et al, 2015) because of its 

advantages in efficiently handle large databases, providing estimates on 

most relevant variables, and allowing the identification of outliers 

(RODRIGUEZ-GALIANO et al., 2012). 

2.3. Results and Discussion 

2.3.1. Crop phenological curves and TIMESAT features 

Initially, we have done an evaluation of the time series spectral profiles of 

different types of targets. The phenological features were characterized by 

median values observed in all the samples for each class. Figures 2.3 to 2.8 

shows the time series spectral profiles of the different targets and the results 

of the two approaches for noise removal, where the dotted line represents 

the time series outliers and null values removed (Equation 2.2) and the thick 

line the double logistic filtered time series. The samples of annual crop were 
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located into two different farms. However, both were on pivot center 

irrigation systems. We observed in the field work that in one of them it was 

a triple crop system (potato, bean and corn), where potatoes were 

harvested between July and the mid-August. This was followed by corn 

planting on September, and harvested between January and February. We 

also observed a short-cycle bean between February and March, followed 

by corn planting from May. On the most time series samples of this farm 

only one season was modelled by TIMESAT, corresponding to corn planting 

in late September (Day of the Year – DOY 265) and harvested in early 

February (DOY 41). The middle of season was observed in mid-November 

(DOY 325) (Figure 2.3).  

Figure 2.3 – EVI time series spectral profile for an annual crop sample located into 
a triple cropping system of potato, bean and corn. Dotted line represents the time 
series outliers and null values removed and the thick line the double logistic filtered 
time series. 

 

It was not possible to identify potatoes seasons because it was not 

completely inside the time series span. It was also not possible to capture 

the bean season, as well the late fall corn season. We hypothesize that that 

is due to the short cycle of bean and mainly for the high intensity of cloud 

contaminated pixels on this period. Although potatoes were harvested later 

in the other farm, it was not possible to detect their season. Only the corn 

season was detected, starting between late November and mid-December 

(DOY 347) and the end of season it was on mid-April (DOY 102). The middle 

of season was observed in late January (DOY 26). On the semi-perennial 
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crop samples corresponding to cassava farms it was observed that in 77% 

of pixels was detected only one season. The start of season was in late 

September (DOY 270) and the middle of season was detected in mid-

February (DOY 45). Based on field observations, we hypothesize that this 

season can be associated to the end of cassava senescence, characterized 

by the start of a new greenness period. The end of season coincided with 

the end of harvest, when the area becomes complete cover by weeds. In 

the other 23% of pixels it was possible to detected two seasons, where the 

second season began between early December (DOY 347) and early April 

(DOY 60) and ending on late June (DOY 179). This indicates a predominant 

phenological behavior of weed, which have a great biomass gain after a 

rainfall period (Figure 2.4).  

Figure 2.4 – EVI time series spectral profile for a semi-perennial crop sample of 
cassava. 

 

We observed that sugarcane (semi-perennial crop class) was planted in 

June. However, the complete ground cover occurs only in November, when 

there were almost no cloud-free images. Therefore, the start of season was 

identified in early December (DOY 338) and the end of season in mid-May 

(DOY 135), corresponding to the harvest (Figure 2.5).  

 

Figure 2.5 - EVI time series spectral profile for a semi-perennial crop sample of 
sugarcane. 
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Figure 2.6 shows the time series spectral profile of a perennial crop sample, 

corresponding to a rubber tree farm. We can see two season’s detection, 

where on the first the start of season was in the middle of August (DOY 229) 

and the end in December (DOY 352).  

Figure 2.6 - EVI time series spectral profile for a perennial crop sample of rubber 
trees. 

 

The second season began between December and February (DOY 29) and 

the end of season occurred in late July (DOY 190). This occurred in 61% of 

the pixels inside this farm. This behavior was not expected for rubber trees, 

considered a perennial crop. However, this can be explained by the high 

frequency of cloud contaminated images between November and February. 

This noise could not be corrected by the smoothing and noise removal 

employed in this study. Additionally, the rubber trees phenology on this 
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region has a senescence period between July and August, followed by a 

greenness period after September. The 49% remaining pixels located in this 

farm presents time series with a single season between August (sos = DOY 

231) and late July (eos = DOY 173).   

Time series of pixels located on one of the two citrus farms that represents 

the perennial crops class presents a subtle difference on phenological 

features. It was detected one short season starting on early December 

(DOY 343) and ending on mid-March (DOY 73). The other citrus farm, as 

well on a mango farm, it was observed that the model detected a longer 

season, between December (DOY 338) and June (DOY 171). Among the 

other differences it was also observed bigger amplitudes on the first citrus 

farm (median = 0.073 EVI) than the other perennial crops farms (median = 

0.059 and 0.055 for citrus and mango, respectively). Furthermore, the 

middle of season on the first citrus farm occurred in January (DOY 18) and 

the EVI peak found was 0.22 EVI, while in the other areas the middle 

occurred in March (DOY 61 and 85, for citrus and mango), with a 0.18 EVI 

peak.  

Figure 2.7 - EVI time series spectral profile for perennial crop sample of one of the 
citrus farm (similar to mango). 

 

 

Finally, on the eucalyptus planted forests, 60% of pixels showed time series 

where it was not possible to detect any season, so the values of 
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phenological features were zero. In the other 40% pixels’ time series it was 

detected one season that began on early February (DOY 41) and finished 

on July (DOY 185), as showed in the Figure 2.8. 

Figure 2.8 – EVI time series spectral profile for a planted forest sample of 
eucalyptus. 

 

2.3.2. Classification performance 

A 10 fold cross-validation technique was applied in the data set and 15,499 

of the 16,243 pixels were classified correctly, resulting in an accuracy of 

95.42% and Kappa 0.9284. The confusion matrix with the errors of 

commission and of omission is presented on Table 1.1. 

Table 2.1 – Confusion matrix: (a) Perennial crop, (b) Annual crop, (c) Planted 
Forest and (d) Semi-perennial crop. EC = errors of commission; EO = errors of 

omission. 
 

Classification 
Reference 

a b c d Total EC% 

a 6563 40 184 127 6914 5.1 

b 3 717 7 10 737 2.7 

c 265 17 6303 40 6625 4.9 

d 26 21 4 1916 1967 2.6 

Total 6857 795 6498 2093 16243  

EO% 4.3 9.8 4 2   

Most misclassification happened between perennial crop and planted forest 

and between perennial crop and semi-perennial crop, due to the rubber 

trees spectral similarity with the two other classes. The major omission 
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errors were observed on annual crop and perennial crop classes. We 

observed that 5.03% of pixels in the annual crop class were omitted, being 

wrongly classified as perennial crop.  

As we discussed before, a significant number of samples of annual crop 

class presented time-series where it was detected only one season 

(between December and March) with a 0.22 EVI peak. This is similar to 

some annual crop class pixels, what should be contributed for the omission 

of these samples. With respect to the semi-perennial crop class, major 

confusion was observed on the perennial crop, where around 6.1% of pixels 

were wrongly classified.  

The major commission errors were founded on the perennial crop (5.1%) 

and planted forest (4.9%) classes. An inclusion of 2.6% of pixels of the 

planted forest and 1.84% of semi-perennial classes was also observed in 

the perennial crop class. Around 4% of pixels of perennial agriculture were 

included on planted forest class.  

However, we considered that the explored features configured a good 

separability between classes. Figure 2.9 shows the 3D-scatterplot with 

length of season, base value and left derivative features of the first seasons.  

 

 

 

 

 

 

Figure 2.9 – 3D-scatterplot of length of season, base value and left derivative 
features of the first seasons. The zero values were removed for best visualization.  
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The left derivative is the rate of increase at the beginning of the season. 

Higher values of left derivative indicate that there is a fast rise of the 

greenness. 

We can see in Figure 2.9 that lower values of length of season and base 

value were found for annual crop samples. High values of left derivative 

were observed for this class (> 0.035 EVI). The low values of base value (< 

0.08) indicate that the EVI values before and right after the season were 

also low. This is expected for cropland areas. Besides the omitted zero 

values of planted forest class samples, there are medium and high base 

values (0.13 – 0.17 EVI), medium values of length of season and left 

derivative (0.013 – 0.029 EVI). Pixels of the semi-perennial class presented 

low values of base value and left derivative, and medium values of length 

of season. In the perennial crop class, it is possible to visualize two clusters 

on the 3D-scatterplot, determined by length of season values. Both left 

derivative and base values were medium. By investigating the errors spatial 

distribution, it also seems that it may be associated with heterogeneity of 

the monitored areas, resulting in spectral mixing. In addition, for the 

extraction of the phenological parameters using TIMESAT, a generic model 

was considered for all classes, and the small number of samples may also 

have contributed to errors. The definition of time series span it is also very 

important criteria to take into account.  
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2.4. Final Considerations 

These preliminary results are encouraging and demonstrate the potential of 

phenological parameters obtained from time series of OLI vegetation 

indices for agricultural land use classification. We showed the potential use 

of higher temporal resolution Landsat-like images for crop mapping, what 

will soon become reality, once Landsat, Sentinel-2A and CBERS-4 data can 

be combined to generate consistent time series to produce land use maps. 

Further analyses are needed to apply this approach in large areas and to 

test different time span and different vegetation indices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 ASSESMENT OF A MULTI-SENSOR APPROACH FOR NOISE 

REMOVAL ON LANDSAT-8 OLI TIME SERIES USING CBERS-4 MUX 
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DATA TO IMPROVE CROP CLASSIFICATION BASED ON 

PHENOLOGICAL PARAMETERS4 

 

3.1. Introduction 

Given the large availability of arable land, and the growing demand for food 

in the world, Brazil has consolidated as a big player on the global agricultural 

scene. Remote sensing is an important tool used within agriculture, 

regarding its ability to generate information on large scale in a cost-effective 

manner. Therefore, agricultural mapping has become strategic since it 

provides better understanding of cropland distribution, and its impact on the 

environment. With advances in data processing and storage technologies 

as well as the availability of consistent and continuous long-term image 

series, remote sensing is undergoing a paradigm shift. Time series 

techniques stand out for allowing seasonal variation accounts of the 

analysed target.  

Although the use of time series for cropland classification has been well 

explored using MODIS sensor (SAKAMOTO et al., 2005; ARVOR et al., 

2011; KÖRTING, 2013; RISSO et al., 2012; BORGES; SANO, 2014; 

NEVES et al., 2016), there is still a demand for more detailed maps, which 

are made possible from time series with finer spatial resolutions, such as 

Landsat-like images (ZHENG et al., 2015; PEÑA et al., 2015; PAN et al., 

2015; BENDINI et al., 2016). As the temporal resolution of Landsat-like 

satellites is still low (e.g. 16 days), an open question in the scientific 

literature is about how to deal with the noise in the time series. The noise is 

characterized by negative outliers, which possibly result from either cloud 

cover or cloud shadow contamination or atmospheric scattering. To deal 

                                                      
 

4 This chapter is based on the paper: BENDINI, H. N.; FONSECA, L. M. G.; KÖRTING, T. S.; 

MARUJO, R. F. B.; SANCHES, I. D. A.; ARCANJO, J. S. Assesment Of A Multi-Sensor Approach 

for Noise Removal on Landsat-8 OLI Time Series Using CBERS-4 Mux Data to Improve Crop 

Classification Based on Phenological Parameters. Brazilian Journal of Cartography (2017), Nº 69/5, 

Special Issue GEOINFO 2017: 947-957 Brazilian Society of Cartography, Geodesy, Photgrammetry 

and Remote Sense ISSN: 1808-0936. 
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with it, some approaches were developed, which include cloud and cloud 

shadow flags generated from the Automated Cloud Cover Assessment 

(ACCA) algorithm (IRISH et al., 2006) and Fmask algorithm (ZHU; 

WOODCOCK, 2012). However, both ACCA and Fmask sometimes fail to 

detect thin clouds i.e. cirrus and the edges of cumulus clouds 

(LYMBURNER et al., 2016). In this case, methods based on thresholds 

(HAMUNYELA et al., 2013; BENDINI et al., 2016; LYMBURNER et al., 

2016) or smoothers (PAN et al., 2015) can be used. 

There is also the possibility to take advantage of multi-sensor data, 

considering the large amount of available remote sensing images. In a 

previous investigation, we showed the potential use of higher temporal 

resolution Landsat-like images for crop mapping (BENDINI et al., 2017b). 

Recently the China Brazil Earth Resources Satellite (CBERS) program 

launched CBERS-4 that carries in the payload module, among others, the 

Multispectral Camera (MUX).  

In this work, we investigated an algorithm for noise removal in Landsat-8 

OLI time series using CBERS-4 MUX data to improve a crop classification 

method based on phenological features.  

3.2. Methodology 

This section describes the methodology and is divided in a description of 

the study area, characteristics of data used on this work, the correlation 

analysis between both sensors to deal with the spectral differences, how 

the integrated time series were constructed, the attribute extraction and the 

classification. 

3.2.1. Study area 

The study area is situated in Itobi municipality in São Paulo state (southeast 

of Brazil), in a Cerrado biome region (Figure 3.1). As the focus is on 

croplands, we selected a region of interest where the main land cover is 

agriculture, silviculture, and pasture. In this region, farmers grow a variety 

of crops throughout the year. Major field crops in this area are sugarcane, 
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corn, bean, potato, soybean, sugar beet and onions. There is also 

production of mango, avocado and eucalyptus. Farmers grow crops in 

double cropping systems and even in triple cropping systems, mainly in 

irrigated areas. The usual planting for summer crops occurs from October 

to December and harvesting from February to April. We also observed crops 

growing in late fall (May – July) and harvesting in the next spring especially 

in irrigated areas. 

Figure 3.1 – Location of the study area in São Paulo state, Brazil. 

 

3.2.2. Remotely sensed data 

A total of 24 scenes of Landsat-8 OLI (WRS 2 – Worldwide Reference 

System 2, Path/Row 219/75) between August 2015 and August 2016 were 

processed to Level 1 Terrain Corrected (L1T) by the USGS EROS Science 

Processing Architecture (ESPA) (DEVRIES et al. 2015; DEVRIES et al. 

2015a). 
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Landsat-8 data were corrected using L8SR, a newly developed algorithm 

that takes advantage of Landsat-8 new sensor characteristics (U.S. 

GEOLOGICAL SURVEY, 2015; VERMOTE, 2016). Cloud (pixel value 4), 

cloud shadow (pixel value 2), snow (pixel value 3), water (pixel value 1) and 

clear (pixel value 0) masks were provided for Landsat-8 data using Cfmask, 

a C implementation of the Fmask algorithm (ZHU; WOODCOCK, 2012; 

ZHU et al., 2015).  

CBERS-4 MUX imagery has been provided by INPE. A total of 9 scenes of 

CBERS-4 MUX (CBERS WRS Path/Row 155/124) were acquired in the 

same period. Table 3.1 shows OLI and MUX images available from August 

2015 to August 2016.  

The images were radiometrically corrected and geometrically adjusted and 

refined by using control points and the SRTM 30m v. 2.1 digital elevation 

model (DEM) (Level 4). 

Table 3.1 – Availability of Landsat-8 (Path/Row 219/75) and CBERS-4 (Path/Row 
155/124) imagery from August 2015 to August 2016. 
 

Month/Year Sensor Acquisition dates (day of year) 
Number of 

scenes 

Aug – Dec 

2015 

OLI 
218, 234, 250, 266, 282, 298, 314, 

330, 346, 362 
10 

MUX 215, 241, 267, 345 4 

Jan – Aug 

2016 

OLI 
13, 29, 45, 61, 77, 93, 109, 125, 

141, 157, 173, 189, 205, 237 
14 

MUX 32, 110, 162, 188, 240 5 
 

 

The atmospheric correction was proceeded using the 6S model (Second 

Simulation of a Satellite Signal in the Solar Spectrum) (VERMOTE et al. 

1997). For the MUX imagery, the cloud cover for the region of interest was 

visually assessed. The specification of the Landsat-8 OLI and CBERS-4 

MUX spectral bands used in this can be seen on Table 3.2. 
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Table 3.2 – Spectral Band Specifications for Landsat-8 OLI and CBERS-4 MUX. 

Band Landsat-8 OLI (µm) CBERS-4 MUX (µm) 

Blue B2: 0.45 – 0.51 B5: 0.45 – 0.52 

Green B3: 0.53 – 0.59 B6 0.52 – 0.59 

Red B4: 0.64 – 0.67 B7: 0.63 – 0.69 

Near Infrared (NIR) B5: 0.85 – 0.88 B8: 0.77 – 0.89 
 

The greatest difference in spectral bandwidths between the two sensors are 

on the NIR band, but there are also significant differences in spectral 

response function (SRF) profiles between corresponding CBERS-4 MUX 

and Landsat-8 OLI spectral bands (PINTO et al., 2016). 

3.2.3. Correlation analysis between Landsat-8 OLI and CBERS-4 MUX 

First we selected a pair of MUX and OLI images, considering the temporal 

proximity between them. The characteristics of the two images are shown 

in Table 3.3. 

Table 3.3 – Characteristics of the pair of MUX and OLI images used for correlation 
analysis. 
 

Satellite/Sensor Landsat-8 OLI (µm) CBERS-4/MUX 

Date 06-Aug-15 04-Aug-15 

Acquisition Time (UTC) 13:03:18 13:26:11 

Path/Row 219/75 155/124 

Sun elevation 40.61° 43.37° 

Sun azimuth 41.58° 36.05° 

Look Angle NADIR NADIR 

 

Considering the spatial resolution difference between the images (30 

meters for OLI and 20 meters for MUX), we resampled MUX images to 30 

meters, using the nearest neighbour interpolation. To deal with cloud 

contamination, we used the Fmask image and visual assessment to crop a 

cloud free region on OLI and MUX surface reflectance images, respectively 

(Figure 3.2). 
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Figure 3.2 – Cropped images used on the correlation analysis. (a) LANDSAT-8 
OLI EVI (06 August 2015) and (b) CBERS-4 MUX EVI (August 4th, 2015). 

 

(a) 

 

(b) 
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We analysed the correlations between cropped MUX and OLI images, for 

each selected vegetation index (EVI and NDVI). In order to determine an 

equation to predict OLI reflectance from MUX reflectance, linear regressions 

were built. 

3.2.4. Building the multi-sensor time series 

An algorithm was built to look for the nearest MUX image to each Landsat 

image, based on a user defined time span. In this case, we used time span 

of 8 days. Figure 3.3 shows a general scheme of the proposed method. 

Figure 3.3 – General scheme of the methodology used to build the integrated time 
series. On the left, a time series of EVI (the red line is the predicted time series 
using the equation to predict OLI reflectance from MUX and the blue line is the 
original Landsat time series); the integrated time series is on the right, which points 
out the positions where the replacement has occurred. 
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After detecting the nearest MUX images for each Landsat image, the 

algorithm checks the pixels contaminated by cloud and cloud shadow in the 

Landsat time series using Fmask images. When a contaminated pixel is 

detected in the time series, it is replaced by a predicted OLI reflectance, if it 

is within the defined time window. 

3.2.5. Filtering the time series 

We also applied a combined filtering approach for noise removal to the 

Landsat time series in order to assess the classification improvement 

compared to that of integrated time series. The approach was put forth by 

interpolating noise values with the average between the nearest neighbours 

in time, considering the Fmask quality data (Equation 3.1) and negative 

outliers based on a threshold as recommended by Hamunyela et al. (2013) 

(Equation 3.2). 

𝑥𝑡 =
𝑥𝑡−1+𝑥𝑡+1

2
             {𝑖𝑓 𝑓𝑚𝑎𝑠𝑘 = 2 𝑂𝑅 𝑓𝑚𝑎𝑠𝑘 = 4}                (3.1) 

𝑥𝑡 =
𝑥𝑡−1+𝑥𝑡+1

2
      {𝑖𝑓 𝑥𝑡 − 𝑥𝑡−1 < −0.01𝑥𝑡−1 & 𝑥𝑡 − 𝑥𝑡+1 < −0.01𝑥𝑡+1}    (3.2) 

where  𝑥𝑡 = an observation of the time series at time 𝑡 

              𝑥𝑡−1 = an observation at time 𝑡 − 1 

  𝑥𝑡+1 =  at time 𝑡 + 1 

observation 𝑥𝑡 is replaced as an outlier with the average of 𝑥𝑡−1 and 𝑥𝑡+1 if 

the difference between 𝑥𝑡 and 𝑥𝑡−1 is less than 1% of 𝑥𝑡−1, and the 

difference between 𝑥𝑡 and 𝑥𝑡+1 if  is less than −1% of 𝑥𝑡+1.  

This method, however, is not capable of removing consecutive outliers. 

Figure 3.4 shows an example of how local outliers were removed from the 

NDVI and EVI time series. 
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Figure 3.4 – Example of how local outliers were removed from the NDVI time 
series. The cyan lines are the positions where cloud and cloud shadow were 
detected by Fmask. The black line is the integrated time series and the green line 
is the filtered integrated time series using Equation 3.1 followed by Equation 3.2. 

 

 

3.2.6. Extracting phenological features 

We selected 100 well-known polygon samples in the study area, 

considering the classes of annual agriculture (potato, corn, sugar beet, 

onion, bean and soybean), perennial agriculture (avocado and mango), 

semi-perennial agriculture (sugarcane), grassland and native forest.  

We extracted NDVI and EVI time series of pixels from each sample polygon 

in the study area. Phenological metrics in time series were obtained by the 

TIMESAT v3.2 software (JÖNSSON; EKLUNDH, 2004), where seasonal 

data are extracted for each of the growing seasons of the central year 

(Figure 2.2). During a period of n years there may be n – 1 full seasons 

together with two fractions of a season in the beginning and end of the time 
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series. So, to extract seasonality parameters from one year of data, the time 

series has been duplicated to span three years, as recommended by 

Jönsson and Eklundh (2015). For the phenological metrics extraction, we 

smoothed (out) the time series considering the double logistic filter (ZHANG 

et al., 2003; JÖNSSON; EKLUNDH, 2004). This function is recommended 

for smoothing image time series on cropland areas in the Brazilian Cerrado 

(BORGES; SANO, 2014).  

Figure 2.2 illustrates the schema of the seasonality parameters generated 

by TIMESAT. In this study, we assume that the seasonality parameters are 

the same as the phenological metrics.  

3.2.7. Classification 

We subjected the phenological metrics obtained on TIMESAT to data 

mining using the Random Forest (RF) algorithm (BREIMAN, 2001) 

considering each input: 1) Original Landsat EVI time series; 2) Filtered 

Landsat EVI time series; 3) Integrated EVI time series; 4) Filtered Integrated 

EVI time series; 5) Original Landsat NDVI time series, 6) Filtered Landsat 

NDVI time series, 7) Integrated NDVI time series and 8) Filtered Integrated 

NDVI time series.  

The RF algorithm is a classification technique in which the data set is 

randomly divided into several subsets of smaller size, and from each subset 

a decision tree is built.  

Random Forest algorithm has been widely used in remote sensing 

applications since it efficiently handles large databases (MÜLLER et al, 

2015; PEÑA et al, 2015). Besides, it provides estimates on the most 

relevant variables, allowing the identification of outliers (RODRIGUEZ-

GALIANO et al., 2012).  

There was a total of 31 training pixels for annual agriculture, 15 pixels for 

perennial agriculture, 26 pixels for semi-perennial agriculture, 14 pixels for 

grassland and 14 pixels for native forest. The results were evaluated using 

confusion matrix index and global accuracy (WITTEN; FRANK; HALL, 
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2011). The models were executed considering a 10-fold cross validation 

method. The classification results were obtained using the software 

package WEKA (HALL et al., 2009). 

3.3. Results and Discussion 

The results of the correlation analysis between the cropped images are 

shown in Figure 3.5, for each selected vegetation index: a) EVI and b) NDVI.  

Figure 3.6 shows the results of different approaches for noise removal in an 

EVI time series. 

Figure 3.5 – Scatterplot of the pair of cropped images used to predict OLI 
reflectance from MUX reflectance. (a) EVI and (b) NDVI. 

 

(a) 

continue 
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Figure 3.5 – Conclusion. 

 

(b) 

The linear regressions equations to predict OLI reflectance from MUX 

reflectance are also shown. The goodness of fit for EVI and NDVI are 

respectively 0.8573 and 0.7733. We can see that both EVI and NDVI values 

of Landsat-8 are higher than CBERS-4.  

As we can see in Figure 3.6, the integrated time series can deal with noise, 

replacing cloud and cloud shadow contaminated pixels with clear pixels of 

MUX images, and allowing improvement of the time series according to the 

phenological behavior of the vegetation, which is significant regarding the 

capability of TIMESAT of extracting features. 
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Figure 3.6 – Results of different approaches for noise removal in an EVI time 
series. In (a) the black line is the original Landsat-8 time series, the blue line is the 
integrated time series and the black thin line is filtered integrated time series. In (b) 
the blue line is the filtered integrated and the black line is the Landsat-8 filtered 
time series. 

 

(a) 

 

(b) 
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Concerning the 100 analysed pixels, 11.96% of all cloud and cloud shadow 

contaminated observations were replaced using CBERS-4 MUX images.  

A 10 fold cross-validation technique was applied using different training sets 

(Original Landsat EVI time series; Filtered Landsat EVI time series; 

Integrated EVI time series; Filtered Integrated EVI time series; Original 

Landsat NDVI time series, Filtered Landsat NDVI time series, Integrated 

NDVI time series and Filtered Integrated NDVI time series). The different 

data set classification accuracy is presented in Table 3.4. Concerning the 

NDVI time series, the multi-sensor approach accuracy was 64% using the 

filtering approach (Equation 3.1 and 3.2), as opposed to 68% without the 

filtering step.  

Table 3.4 – Accuracy of classification for the different data set classifications. 
 

Time series Data sets NDVI EVI 

Integrated 68% 73% 

Filtered Integrated 64% 78% 

Filtered Landsat 70% 76% 

Original Landsat 60% 70% 

Integrated 68% 73% 

 

However, when using only Landsat-8 data, the accuracy was 60%. But 

when combining the filtering approaches of Equation 3 and 4, the 

classification accuracy with Landsat-8 time series reached 70%.  

In relation to EVI time series, multi-sensor approach produced an accuracy 

higher than those when using the original Landsat-8-time series 

(respectively, 73% and 70%), as well as when combined with filtering 

approaches. The classification accuracy using the filtered integrated time 

series (78%) was slightly better than that using Landsat-8 time series (76%).  

Holden and Curtis (2016) observed the effect of combining data from the 

two sensors (L7 ETM+ and L8 OLI). Once L7 ETM+ has the same spectral 

bandwidths of CBERS-4 MUX, we can use some of their conclusions. For 

example, NDVI relies on the contrasting relationship between the near 

infrared band and the red band. They observed that there is a strong and 
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consistent positive bias in NDVI, with Landsat-8 having higher NDVI. Here 

we observed that there is also a strong bias, but not consistent, as this 

relation is not observed for the smaller values. We observed that the EVI 

values are also higher for Landsat-8 than CBERS-4, but the correlation 

between them is higher than NDVI. The EVI differs from NDVI by utilizing 

the blue band as an additional normalizing factor that corrects the red band 

for atmospheric influences. The bias in the blue band between Landsat-8 

and CBERS-4 nullifies the bias in the red and near infrared band, resulting 

in a more correlated EVI across sensors (HOLDEN; CURTIS, 2016). This is 

probably the reason explaining the higher correlation for EVI, and 

consequently the best classification results when using the EVI integrated 

time series. Arvor et al. (2011) reported that EVI is more sensitive than NDVI 

for high biomass regions (HUETE et al., 1999). According to Chen et al. 

(2004), this is due to the fact that the NDVI saturates faster than the EVI, 

resulting in the NDVI being less effective in separating crops. Moreover, the 

EVI is less affected by atmosphere and soil disturbances (HUETE et al., 

2002). We can see that small differences on the time series values lead to 

changes in the results of the smoothers improved by TIMESAT. 

Furthermore, finding differences on the extracted parameters can modify 

the results of classification. As the correlation between the MUX NDVI and 

OLI NDVI tend to be smaller, it can modify the amplitude of the signal, 

resulting in significant changes on the smooth time series. We can also see 

in Figure 3.5 that the goodness of fit between the Landsat NDVI and MUX 

NDVI are significantly lower than in respect EVI. As observed by Pinto et al. 

(2016), the greatest spectral bandwidths difference between the sensors is 

on the NIR band. But there is also significant spectral response function 

(SRF) profiles differences between corresponding CBERS-4 MUX and 

Landsat-8 OLI spectral bands.  

 

 

3.4. Final Considerations 
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This experiment had the objective of investigating a method for noise 

removal on Landsat-8 OLI time series using CBERS-4 MUX data to improve 

a crop classifi cation method based on phenological features. We observed 

a slight increase in the classification accuracy when using the proposed 

method. The results for EVI were consistently more accurate compared to 

NDVI. The best result was observed with the EVI integrated filtered time 

series (78%), followed by the fi ltered Landsat EVI time series (76%). This 

work did not compare thoroughly the two sensors, but we can see that there 

are significant differences. We suggest that image normalization 

procedures are strongly recommended to equate the surface reflectance 

from CBERS-4 to Landsat-8. A per-scene relative correction should also be 

performed to incorporate the spatial variability of the sensor differences and 

the seasonal variation. We can also infer that the different methods of 

atmospheric correction and ancillary datasets may be affecting the results; 

as well problems of misregistration between the images, resampling and the 

use of just one pair of images for determine the equation to predict OLI 

reflectance from MUX reflectance can also be sources of errors. More 

studies using other footprints and for longer time series are needed to better 

comprehend the relation between the OLI and MUX images and the effects 

of the diff erent fi ltering approaches, as well to understand these eff ects 

on the results of smoothing proceeded by TIMESAT with double logistic 

functions. It is also suggested to test the other smoothing approaches 

implemented by TIMESAT as the Asymmetric Gaussian functions and 

Savitzky-Golay. 

 

 



40 
 

4 EVALUATION OF SMOOTHING METHODS ON LANDSAT-8 EVI 

TIME SERIES FOR CROP CLASSIFICATION BASED ON 

PHENOLOGICAL PARAMETERS5 

 

4.1. Introduction 

With the availability of free and continuous satellite imagery, allowing the 

construction of consistent time series of vegetation index images, remote 

sensing undergoes a paradigm shift with regard to monitoring changes in 

land use and land cover, mainly vegetation and agriculture applications, 

where it is necessary to take into account phenological variations. 

Due to the possibility of working with consistent time series, each pixel of 

image time series can be treated as a signal, so that signal processing 

techniques and econometrics can be applied, such as the decomposition of 

time series in trend and seasonality components, and extraction of 

parameters of these components to land cover and land use classification 

(ARVOR et al., 2011; ZHENG et al., 2015), change detection and 

trajectories analysis (VERBESSELT et al., 2010). One of the important 

steps for this type of study is the preprocessing of the time series for noise 

removal, usually caused by the presence of clouds. Several algorithms for 

noise removal in time series have been used, among them, the Savitzky-

Golay smoother (CHEN et al., 2004), asymmetric Gaussian functions 

(JÖNSSON; EKLUNDH, 2004) and Double-logistic (ZHANG et al., 2003; 

JÖNSSON; EKLUNDH, 2004). In addition to the application of these 

smoothing algorithms, cloud masks combined with outlier interpolation 

techniques can also be used together (HAMUNYELA et al., 2013; BENDINI 

et al., 2016), as well as multi-sensor approaches for replacing contaminated 

pixels by cloud-free pixels (BENDINI et al., 2017b). Some studies in the 

                                                      
 

5 This chapter is based on the paper: BENDINI, H. N.; FONSECA, L. M. G.; KÖRTING, T. S.; 

SANCHES, I. D. A.; MARUJO, R. F. B. Evaluation of smoothing methods on Landsat-8 EVI time 

series for crop classification based on phenological parameters. In: BRAZILIAN SYMPOSIUM ON 

REMOTE SENSING, 18., 2017, Santos, Brazil. Proceedings… São José dos Campos: INPE, 2017. 

p. 4267-4274. ISBN: 978-85-17-00088-1. 



41 
 

recent literature seek to compare these different smoothing approaches, but 

most of them focused on coarse spatial resolution satellite image time 

series, such as the Moderate Resolution Imaging Spectroradiometer 

(MODIS) (ATZBERGER; EILLERS, 2011; BORGES; SANO, 2014) and, 

furthermore, they do not take into account the effect that these different 

smoothers have on the classification performance. Bendini et al. (2017b) 

evaluated the application of Landsat-8 OLI and MUX/CBERS-4 sensor 

integration method to obtain vegetation indices time series with lower cloud 

contamination to improve a crop classification in the Cerrado biome. They 

used phenological attributes extracted from time series smoothed by the 

double-logistic algorithm, since this algorithm was referenced by Borges 

and Sano (2014) as being the most suitable for smoothing series in 

agricultural areas in the Cerrado, considering MODIS images. However, 

there is a lack of information to confirm if this comparison is valid for 

Landsat-like image time series. Thus, the objective of this study was to 

evaluate the different time series smoothing methods, Savitzky-Golay, 

asymmetric Gaussian and double-logistic functions, combined or not with 

filtering techniques, and the impact of its use on the classification of 

agricultural use in a region of the Cerrado, using phenological parameters 

extracted from EVI Landsat-8 image time series. 

4.2. Work Methodology 

We conducted our study in the Itobi municipality, in São Paulo state, Brazil 

(Figure 4.1). Field campaigns were carried out for collecting training 

samples, totaling 100 pixels. The classes considered were Annual Crop 

(potato, soybean, corn, onions and sugar beet on a double crop system), 

Semi-Perennial Crop (sugarcane), Perennial Crop (avocado, mango and 

Brazilian grapetree), Natural Forest and Grassland. A total of 24 scenes of 

Landsat-8 OLI (WRS 2 – Worldwide Reference System 2, Path/Row 

219/75) between August 2015 and August 2016 were processed to Level 1 

Terrain Corrected (L1T). These were corrected for atmospheric conditions 

to identify and mask cloud and cloud shadows by the USGS EROS Science 

Processing Architecture (ESPA) (DEVRIES et al. 2015; DEVRIES et al. 

2015a). Landsat-8 data were corrected using L8SR, a newly developed 
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algorithm that takes advantage of some of Landsat-8's new sensor 

characteristics (USGS, 2016; VERMOTE, 2016). Cloud (pixel value 4), 

cloud shadow (pixel value 2), snow (pixel value 3), water (pixel value 1) and 

clear (pixel value 0) masks were provided for Landsat-8 data using Cfmask, 

a C implementation of the Fmask algorithm (ZHU; WOODCOCK, 2012; 

ZHU et al., 2015). 

Figure 4.1 – Location of Itobi municipality, in São Paulo state, Brazil. 

 

We first applied a combined filtering approach for noise removal on the 

Landsat time series. The approach was put forth by interpolating the noise 

values with the average between the nearest neighbors in time, considering 

the Fmask quality data and negative outliers based on a threshold as 

recommended by Hamunyela et al. (2013). This method, however, is not 

capable of removing consecutive outliers.  

For both cases (filtered and raw data) we implemented three smoothing 

algorithms through the TIMESAT software package including the Savitzky-

Golay, asymmetric Gaussian and double-logistic functions (JÖNSSON; 

EKLUNDH, 2004), followed by the extraction of the phenological attributes 
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using TIMESAT as well. More details about its implementation and the 

phenological attributes extraction can be seen at Jönsson and Eklundh 

(2015).  

We subject the phenological metrics obtained on TIMESAT to data mining 

using the Random Forest (RF) algorithm (BREIMAN, 2001) considering 

each method: raw Landsat EVI time series smoothed by 1) Savitzky-Golay 

function, 2) by Asymmetric Gaussian and 3) Double logistic function; and 

the filtered Landsat EVI time series smoothed by 4) Savitzky-Golay function, 

5) Asymmetric Gaussian and 6) Double- logistic function.  

The RF algorithm is a classification technique in which the data set is 

randomly divided into several subsets of smaller size by means of applying 

bootstrap, and from each subset a decision tree is developed. All trees 

contribute to the classification of the object under study, by voting on which 

class the target attribute must belong. Random Forest algorithm has been 

widely used in remote sensing (MÜLLER et al, 2015; PEÑA et al, 2015) 

because of its advantages in efficiently handling large databases, providing 

estimates on the most relevant variables, and allowing the identification of 

outliers (RODRIGUEZ-GALIANO et al., 2012).  

There were a total of 31 training pixels for the annual agriculture class, 15 

pixels for perennial agriculture, 26 pixels for semi-perennial agriculture, 14 

pixels for grassland and 14 pixels for native forest.  

The results were evaluated by the confusion matrix index, as global 

accuracy (GA), Kappa and producer's accuracy (PA) (WITTEN et al, 2011). 

The models were executed considering a 10-fold cross validation method. 

The classification results were obtained using the software package WEKA 

(HALL et al., 2009). 

4.3. Results and Discussions 

The classification results considering the different smoothing methods over 

the original raw EVI time series are showed in Table 4.1. 
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Table 4.1 – Accuracy assessment statistics of the classifications considering the 
different smoothing algorithms using the EVI raw time series including global 
accuracy (GA), kappa statistic, and the producer's accuracy (PA) of each class. 
 

Smoother/PA 
(%) 

Annual 
Agriculture 

Natural 
Forest 

Perennial 
Agriculture 

Semi-
perennial 

Agriculture 

Grassland GA% (kappa) 

DL 84.00% 75.00% 53.57% 90.00% 61.90% 70.00% (0.62) 

AG 89.66% 78.57% 76.92% 73.68% 66.67% 79.00% (0.73) 

SG 92.86% 85.71% 78.57% 82.35% 92.31% 86.00% (0.82) 

 

The best classification result was found using the Savitzky-Golay smoothed 

data, with an overall accuracy of 86% and kappa of 0.82. This result is 

followed by 79% (kappa of 0.73) with Asymmetric Gaussian method, and 

70% (kappa of 0.62) using the Double-logistic function.  

In respect to per-class classification results, we can see that the only class 

that had lower producer´s accuracy using the Savitzky-Golay smoothed 

time series it was the Semi-Perennial Agriculture, with 82.35%. The higher 

producer´s accuracy for this class was found with the Double-logistic 

method, with 90%. 

Figure 4.2 shows the smoothed EVI time series with the different smoothing 

algorithms using the filtered time series and the points of start and end of 

seasons detected by the TIMESAT´s algorithm to extract the phenological 

attributes.  

The classification results considering the different smoothing methods over 

the filtered EVI time series can be observed in Table 4.2. 
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Figure 4.2 – Smoothed EVI time series with the different algorithms using the raw 
data. The blue line is the smoothed time series, the black thin line is the raw time 
series, and the points are the start and end of seasons detected by the TIMESAT´s 
algorithm to extract the phenological attributes. 
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Figure 4.3 shows the Smoothed EVI time series with the different smoothing 

algorithms using the filtered time series and the points of start and end of 

seasons detected by the TIMESAT´s algorithm to extract the phenological 

attributes.  
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Figure 4.3 – Smoothed EVI time series with the different smoothing algorithms 
using the filtered EVI time series. The blue line is the smoothed time series, the 
black thin line is the raw time series, and the points are the start and end of seasons 
detected by the TIMESAT´s algorithm to extract the phenological attributes. 
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The best classification result was found using the Asymmetric Gaussian 

smoothed data, with an overall accuracy of 81% and kappa of 0.75 (Table 

4.2). This results are followed by 76% (kappa of 0.69) with Double-logistic 

method, and 70% (kappa of 0.61) using the Savitzky-Golay function. In 

respect to per-class classification results, we can see that the only class that 

had lower producer´s accuracy using the Asymmetric Gaussian smoothed 

time series it was the Semi-perennial agriculture class, with 61.54%.  
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Table 4.2 – Accuracy assessment statistics including global accuracy and (kappa 
statistic) for classifications, considering the different smoothing algorithms using 
the EVI filtered time series, and the producer's accuracy (PA) of each class. 
 

Smoother/PA 
(%) 

Annual 
Agriculture 

Natural 
Forest 

Perennial 
Agriculture 

Semi-
perennial 

Agriculture 

Grassland GA% (kappa) 

DL 86.67% 68.75% 76.00% 69.23% 68.75% 76.00% (0.69) 

AG 90.32% 71.43% 78.57% 61.54% 92.86% 81.00% (0.75) 

SG 78.79% 57.14% 64.52% 72.73% 72.73% 70.00% (0.61) 
 

We can see clearly looking to Figure 4.2 and 4.3 that when the filtering 

approach was applied before the smoothing, the model fits better the time 

series, but this are not related to the improvement of the classification 

results. We calculated the mean standard deviation considering all the pixel 

time-series within each class in order to measure the intra-class variability. 

Figure 4.4 shows the within-class mean standard deviation for the different 

classes, considering data from different smoothing algorithms using the raw 

and the filtered EVI time series. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – Within-class mean standard deviation for the different classes using 
the different smoothing algorithms with the raw EVI time series. 
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Figure 4.5 – Within-class mean standard deviation for the different classes using 
the different smoothing algorithms with the filtered EVI time series. 

 

We can observe in Figure 4.4 and 4.5 that the EVI time-series previously 

filtered presents bigger mean standard deviations within-class for all the 

classes for both smoothing methods, for example, for the Annual Agriculture 
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class, the mean standard deviation measures increases from 0.124 to 

0.139, 0.098 to 0.117, 0.120 to 0.129 and 0.106 to 0.120 for the original 

time-series, SG, AG and DL, respectively. Among the three smoothing 

algorithms, SG algorithm generated the smallest mean standard deviation 

for most classes. This analysis allows us to evaluate how homogeneous are 

the results of each fitting procedure. We expect that lower mean standard 

deviation values indicates that the method does not generate much new EVI 

values, except for the outliers and pixels with quality issues, and by 

consequence provides more homogeneous results. Similar results were 

observed by Shao et al. (2016) using MODIS data. Considering the raw EVI 

time-series, the smaller the mean standard deviation within-class the higher 

the producer´s accuracy, except for the Semi-Perennial Agriculture class. 

But this relation cannot be observed in the previously filtered time-series. 

4.4. Final Considerations 

In this experiment we evaluated three different time series smoothing 

methods, Savitzky-Golay, asymmetric Gaussian function and Double-

logistic function, combined or not with filtering techniques. Besides, we 

evaluated the impact of their use in the agricultural use classification, in a 

region of the Brazilian Cerrado, using phenological parameters extracted 

from one year Enhanced Vegetation Index (EVI) Landsat-8 image time 

series. The smoothing method that provided the highest classification 

accuracy was the Savitzky-Golay applied to the raw time series (86% and 

kappa=0.82), followed by the asymmetric Gaussian applied to the filtered 

time series (81% and kappa=0.754).  
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5 ROBUST CLASSIFICATION OF CROPLANDS IN THE BRAZILIAN 

CERRADO BASED ON PHENOLOGICAL INFORMATION FROM 

DENSE LANDSAT TIME SERIES6 

5.1. Introduction 

Agricultural mapping and monitoring enable rapid generation of accurate 

information about agricultural supplies, which is strategic and crucial for 

policies and for decision-making in the investment market. Availability of this 

information is important for supporting food security programs, preventing 

food shortages and enabling transparency in the agricultural market. 

Brazilian agribusiness represents around 22.5% of the country’s total GDP 

(CEPEA-USP/CNA, 2015). Even though Brazil’s GDP retracted by 3.8% in 

2015 due to a recession and political unrest, the agricultural sector’s GDP 

increased by 1.8% and was the only sector to report any job growth (SPERA 

et al., 2017; MAPA, 2016).  

With over half of Brazil’s agricultural land falling within the Cerrado biome 

boundary, land clearing in this region has been central to the development 

and strength of the country’s agricultural sector (SPERA et al., 2017). The 

Cerrado biome, also known as the Brazilian savanna, is the second-largest 

biome in Brazil after Amazon, with an extent of more than 2 million km² 

(MMA, 2016). Considered as a global biodiversity hotspot, the Cerrado 

biome also provides environmental services of global importance, such as 

carbon storage and climate regulation. Despite that, the Cerrado has lost 

88 Mha (46%) of its native vegetation cover and with a projection that 31-

34% of the remaining biome is likely to cleared by 2050 (STRASSBURG et 

al., 2017). This scenario of intense agricultural expansion underlines the 

need for methods that accurately map the distribution of agricultural areas 

                                                      
 

6 This chapter is based on the paper: BENDINI. H. N.; FONSECA, L. M. G.; SCHWIEDER, M.; 

KÖRTING, T. S.; RUFIN, P.; SANCHES, I. D. A.; LEITÃO, P. J.; HOSTERT, P. Detailed 

agricultural land classification in the Brazilian cerrado based on phenological information from 

dense satellite image time series. International Journal of Applied Earth Observation and 

Geoinformation, v. 82, 101872, 2019: https://doi.org/10.1016/j.jag.2019.05.005 

https://doi.org/10.1016/j.jag.2019.05.005
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and its evolution over time, so that we can ensure sustainable agricultural 

development and the preservation of the biome.  

Approaches like the TerraClass project were implemented to map natural 

areas, as well as land use in managed areas, first in the Amazon biome 

(ALMEIDA et al., 2016) and recently in the Cerrado (INPE, 2017). 

Agriculture in particular was mapped at intermediate thematic detail, such 

as annual crops, perennial crops (including coffee, citrus, and sugarcane) 

and planted forest. However, although the generated maps have wide 

applicability for understanding the main phenomena and processes 

involved in landscape transformations within those biomes (FONSECA-

MORELLO, 2015; ADAMI et al., 2015; RISSO et al., 2012) it still relies on 

manual procedures of visual interpretation, which entails not only 

subjectivity but also considerable investment of time and effort.  

Remote sensing data have been shown to be a valuable tool for land cover 

and land use mapping, as they capture spatially explicit land cover changes 

in a synoptic manner. In particular sensors with a high temporal resolution 

reflect the seasonal behavior of vegetation, which is essential for mapping 

the highly dynamic and spectrally similar cover types in the agricultural 

domain. Sensors like the Advanced Very High Resolution Radiometer 

(AVHRR) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) with up to daily revisit times have been widely used for agricultural 

mapping (SAKAMOTO et al., 2005; WARDLOW et al., 2007) and several 

studies highlighted the benefits of these time series for agricultural mapping 

in Brazil (ESQUERDO et al., 2011; RUDORFF et al., 2010; ARVOR et al., 

2011; BORGES; SANO, 2014).  

However, even though their moderate spatial resolution (250–1000 meters) 

has been shown to be sufficient for monitoring large scale agricultural 

practices, it does not allow for the detection of smaller fields, due to the 

spectral mixture of the different targets. This limits their use for the 

development of accurate agricultural maps with a high level of thematic and 

spatial detail. To overcome this limitation, several studies have focused on 

mapping approaches that use Landsat-like images that have a spatial 
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resolution which is sufficient to capture even small scale agricultural 

practices (ZHENG et al., 2015; PEÑA; BRENNING, 2015; PAN et al., 2015). 

These developments were catalyzed since space agencies began to 

provide satellite imagery in an operational way (i.e., consistent methods for 

atmospheric and geometric correction), and the extensive data holdings of 

the Landsat archive were made freely accessible (WULDER et al., 2012).  

Along with advances in computational processing performance, and the 

possibility to combine data from different sensor systems the development 

of advanced methods of land cover and land use mapping that make use of 

the Landsat approaches (MÜLLER et al., 2015; RUFIN et al., 2015), 

specifically those involving dense time series (SCHWIEDER et al., 2016; 

BENDINI et al., 2017b; BENDINI et al., 2016). The Landsat sensor family 

has been observing Earth since 1974 and can thus be used to map land 

use and land cover changes over more than 40 years. However, due to SLC 

issues with the Landsat-7 ETM+ sensor, there is less wall-to-wall data 

available between 2012 (the end of the lifetime of Landsat-5 TM) and 2013 

(launch of Landsat-8).  

The use of crop phenological parameters extracted from image time series 

can be an important strategy for developing agriculture mapping methods. 

However, the 16-day temporal resolution of Landsat imagery is not sufficient 

to derive continuous phenological information, nor is it conducive to the 

acquisition of cloud-free images in high frequency.  

Bendini et al. (2016) showed that phenological parameters can be derived 

at a 30-meter spatial resolution, and a higher temporal resolution enables 

mapping of agricultural classes with good accuracies (> 80%) (BENDINI et 

al., 2016). They used the overlap region of WRS2 footprints of Landsat-8 to 

generate 8-day-interval image time series and derived phenological 

parameters for classifying agriculture within a small study area in the 

northeast of São Paulo State, Brazil. However, with this approach the 

methodology was limited to these overlapped areas and could not be 

applied in large scale. 
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Schwieder et al. (2016) explored the potential of dense Landsat time series 

with 8-day temporal resolution to derive phenological information for 

mapping vegetation gradients in the Cerrado. Based on radial basis 

convolution filters they filled data gaps in combined Landsat ETM+/OLI time 

series to derive continuous pixel-wise temporal profiles that capture the 

seasonal behavior of vegetation physiognomies in the Cerrado 

(SCHWIEDER et al., 2016). Their results highlighted the benefits and 

limitations of this approach to map the main spatial patterns of the observed 

physiognomies based on their phenological differences. However, the 

transferability of the approach to managed agricultural lands was not 

assessed.  

The main objective of this work is to describe and assess a method, based 

on phenometrics derived from dense satellite image time series, for 

classifying agricultural land use in the Cerrado biome. We sought to answer 

the following research questions: Are Landsat-based phenometrics suitable 

for classifying agricultural land use in the Cerrado biome? Can we separate 

different semantic levels of a hierarchical classification scheme with this 

method? Are Landsat based phenometrics beneficial to derive important 

agricultural phenological information of the major crops in the Cerrado 

biome? 

5.2. Materials and Methods  

5.2.1. Study areas 

We tested the method in three different study areas within the Cerrado 

(Figure. 5.1) to analyze the method’s robustness. The study areas were in 

the west of Bahia State (regions A1 and A2), southeast of Mato Grosso 

State (region B) and northeast of São Paulo State (region C). Despite all of 

these areas being in the Cerrado biome, they differ with respect to climate 

conditions, vegetation and agricultural practices. 
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 Figure 5.1 – Study sites on the Cerrado biome.  

 

The areas in southeastern Mato Grosso and western Bahia (Figure 5.1; 

regions A1, A2, and B) consist mostly of large-scale and market-oriented 

agriculture. The most common crops are soy, maize and cotton, but there 

is also significant production of coffee and banana, as well as small areas 

producing beans, rice and cassava. The study area in southeastern Mato 

Grosso is characterized by intensive soy/maize and soy/cotton double-

cropping rotations, while western Bahia features mostly single-cropping 

regimes of soy and cotton. The study area in northeastern São Paulo State 

(Figure 5.1; region C) is considered a smallholder agricultural zone, 

characterized by high intra and inter-field spatial variability. Therefore, 

despite its small size, this study area is characterized by heterogeneous 

landscapes. Farmers in this region grow a variety of crops throughout the 

year.  

The majority of crops in this area are sugarcane, potato, maize, soy, beans, 

carrot and onions. There are also areas of perennial crops such as avocado, 

Brazilian grapefruit, lemon, mango, coffee and planted forests (eucalyptus) 
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(IBGE, 2016). Farmers grow crops mainly in double-cropping systems, 

mostly in irrigated areas. The usual planting period is from October to 

December, with harvesting from February to April, but farmers also plant 

winter crops in late fall (May–July), especially in the irrigated areas, and 

harvest them in the following spring. 

Field surveys characterizing the major cropping systems were conducted 

during the 2015–2016 cropping season. We registered GPS waypoints in 

the study area, choosing the points based on their proximity to roads, on the 

size of the field, and on the representativeness of existing cropping systems. 

For the study area in northwestern Bahia, we conducted the survey together 

with the “Rally da Safra 2016” team (AGROCONSULT, 2018) during the 

growing peak (end of February and March). For the other study sites, we 

visited the area throughout the year, recording information about crop 

rotation systems. The field work in Campo Verde is described in Sanches 

et al. (2018) (SANCHES et al., 2018). 

5.2.2. Definitions for the hierarchical classification scheme  

We collected data on land uses and land cover at different levels of thematic 

detail (see Table 5.1) to test the proposed approach using a hierarchical 

classification scheme. Lebourgeois et al. (2017) showed that this approach 

could improve classification results (LEBOURGEOIS et al., 2017), relative 

to the classical approach (where a complete training dataset is used at each 

level).  

GPS waypoints were also registered for different non-crop classes (pasture, 

planted forest, natural vegetation, etc.). As our methodology uses 

phenological information for classification, we considered the Perennial 

crop class and non-crop classes together due to the evergreen phenological 

behavior of perennial crops. We divided the natural vegetation class into 

three main Cerrado physiognomies, based on the definition of TerraClass 

Cerrado (INPE, 2017): forest, savanna and natural grasslands (RIBEIRO; 

WALTER, 2008). 
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We also used the TerraClass maps and photo interpretation of Google Earth 

imagery to collect additional samples for the non-crop classes. Field 

boundaries were then digitized over high resolution Google Earth imagery 

to obtain a ground polygon database. We generated 841 polygons (681 of 

Annual and Semi-perennial crop classes and 160 of Perennial crop and 

non-crop classes).  

Table 5.1 – Definition of the four levels of detail as defined in the hierarchical 
classification scheme. The number of available reference polygons for training and 
validation is shown in parenthesis. 
 

Level 1 Cropland Level 2 Land Cover Level 3 Crop Group Level 4 Crop Rotation 

Annual crop and 
Semi-perennial 

crop (681) 

Annual crop (637) 

First crop / Second crop 
(348) 

Soy / Bean (2) 

Soy / Maize (184) 

Soy / Cotton (141) 

Soy / Soy (1) 

Maize / Soy (6) 

First crop / Winter crop (30) 

Maize / Carrot (2) 

Maize / Onion (4) 

Maize / Potato (3) 

Maize / Beans (5) 

Soy / Potato (14) 

Single crop (177) 

Maize (28) 

Soy (119) 

Cotton (27) 

Millet (1) 

Sorghum (1) 

Single crop / Non-
commercial crop (82) 

Cotton / Millet (1) 

Soy / Millet (7) 

Soy / Brachiaria (6) 

Soy / Sorghum (4) 

Soy / Weed (8) 

Maize / Weed (1) 

Maize / Regrowing (4) 

Semi-perennial crop 
(44) 

 Perennial crop 
and Non-crop 

(160) 

Perennial crop (31) 

Planted forest (15) 

Pasture (63) 

Forest (26) 

Natural grasslands 
(10) 

Savanna (15) 
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The average polygon areas fluctuated from 8.1 hectares for region C to 130 

hectares for regions A1, A2 and B. We selected approximately 50 randomly 

sampled pixels from each polygon, avoiding the edges (using a 30-meter 

buffer), resulting in a set of 54,151 samples. 

The land cover classes (Level 2) are based on the nomenclature of the 

Systematic Survey of Agricultural Production of the Brazilian Institute of 

Geography and Statistics, or PAM-IBGE (IBGE, 2016). Annual crops are 

defined as short- or medium-duration crops, completing their vegetative 

cycle within one year and requiring replanting after harvest to produce. 

Perennial crops have a longer growing season and produce successive 

harvests without the need for replanting. Semi-perennial crops, though not 

listed as one of the classes in the PAM-IBGE, are defined as crops of 

average duration—their vegetative cycle lasts between 1 and 2 years, and 

they require replanting after harvest to produce (e.g., sugarcane). Planted 

forest is a forest formation that is planted and regularly harvested by 

humans (Eucalyptus sp., Pinus sp., etc.). The Crop Group (Level 3) is 

defined by the main agricultural practices in the Cerrado region. The “First 

Crop / Second crop” class is the most common. It consists of a main crop 

during the summer season (October–March) and a second crop, usually 

maize, between March and June.  

The “First Crop / Winter crop” is most common in regions characterized by 

smallholders and the presence of irrigated agriculture; the farms also rotate 

a main crop, such as soy or maize, with winter crops like onions, potatoes, 

beans and carrots. “Single crop” is the traditional agricultural system that 

consists in only one crop season during the year and commonly still uses 

soil tillage. Finally, “Single crop / Non-commercial crop” consists on planting 

one main crop per agricultural year, but with the use of a non-commercial 

crop (i.e., sorghum, brachiaria or millet) to make feasible the no-till farming. 

The Crop Rotation level (Level 4) consists in the most detailed level, with 

crop type definitions. 
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5.2.3. Remotely sensed data 

We used all available ETM+ and OLI data for the study areas (Path/Row 

226/070, 225/070, 226/071, 225/071, 220/068, 220/069, 220/070, 219/069 

and 219/075), acquired between April 2013 and April 2017. Assuming an 8-

day temporal resolution, this 4-year time frame contains 186 potential 

observations. The images were obtained from the US Geological Survey 

(USGS) Earth Resources Observation and Science (EROS) Center Science 

Processing Architecture (ESPA). These data are provided with level 1 

geometric correction (L1TP). Landsat-7 imagery was converted to surface 

reflectance by the atmospheric correction algorithm LEDAPS (Landsat 

Ecosystem Disturbance Adaptive Processing) (MASEK et al., 2016), and 

Landsat 8 data were corrected using L8SR, a newly developed algorithm 

that takes advantage of Landsat-8's new sensor characteristics (USGS, 

2016; VERMOTE et al., 2016). Cloud and cloud shadow pixels were 

masked out from using the Fmask algorithm (ZHU; WOODCOK, 2012; ZHU 

et al., 2015). From the resulting surface reflectance products, we derived 

the Enhanced Vegetation Index (EVI) (LIU et al., 1995), which is known to 

decouple the canopy background from the signal (HEUTE et al., 2002). 

5.2.4. Landsat dense time series 

Limiting factors of a dense time series are sensor errors, such as the scan 

line corrector failure in the case of the Landsat-7 ETM+ (MAXWELL et al., 

2007), and cloud cover. To overcome these constrains, Schwieder et al. 

(2016) used a weighted ensemble of Radial (Gaussian) Basis Function 

(RBF) convolution filters to approximate the missing data in a Landsat time 

series. To approximate the given EVI observations into dense 8-day time 

series without data gaps, we used the RBF approach (SCHWIEDER et al., 

2016) with some adaptations. Let 𝑓(𝑡) be a time series, where 𝑡 ∈ {1, … , 𝑁}. 

The approximated values 𝑦(𝑡) are calculated by Equation 5.1.  

𝑦(𝑡)  =
∑ [𝑓(𝑡)⊗𝑲𝑖]𝑇

𝑖=1 𝑾𝑖

∑ 𝑾𝑖
𝑇
𝑖=1

                (5.1) 
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where ⊗ is an operator for convolution, the kernels for the convolution (𝑲𝑖) 

are given by the Gaussian function (Equation 5.2), and 𝑇 is the total number 

of standard deviations (𝜎) that can be used for the kernel calculation.  

𝑲𝑖 =
1

𝜎𝑖√2𝜋
𝑒

−
1

2
(

𝑥−𝜇

𝜎𝑖
)

2

 𝑥 ∈ {1,…𝐿}
               (5.2) 

The size of the kernel window (𝐿) is given by 𝜎, which directly translates into 

the number of observations (at 8-day intervals). The total kernel width is 

limited to the points in time, which delineate 90% of the area under the 

Gaussian kernel. Increasing 𝜎 expands the kernel window and lowers the 

kernel values. We used three different kernels with 𝜎1 = 0.5, 𝜎2 = 1, 𝜎3 = 3. 

The final approximation is the weighted average of the results of the three 

temporal convolution filters, where the weights (𝑊𝑖) are also calculated by 

the kernel convolution (Equation 5.3), but applied in 𝑑(𝑡), which is a vector 

that expresses data availability (Equation 5.4). The more data available in 

each kernel window relative to the total kernel window, the higher its weights 

in the final aggregation of the different kernels. 

𝑊𝑖 = 𝑑(𝑡) ⊗ 𝐾𝑖                         (5.3) 

where, 

𝑑(𝑡) {
0, 𝑖𝑓 𝑓(𝑡) = 𝑁𝐴
1, 𝑖𝑓  𝑓(𝑡) ≠ 𝑁𝐴

                               (5.4) 

Unlike Schwieder et al. (2016), we did not use a priori outlier detection. After 

an expert-driven visual inspection, we observed that using this outlier 

detection masked some expected intrinsic variations in the phenological 

profiles of agricultural targets (abrupt greening, induced senescence or 

harvesting). We also considered that, as the outliers not relate to harvesting 

are mostly related to clouds or cloud shadows, the cloud masking should be 

sufficient to deal with those outliers. Finally, we used a spline function to 

interpolate possible remaining missing data, with the package “zoo” in R (R 

DEVELOPMENT CORE TEAM, 2017; ZEILES; GROTHENDIECK, 2005). 

5.2.5. Phenometrics 
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Phenological parameters were obtained by the TIMESAT v3.2 software 

(JÖNSSON, P.; EKLUNDH, L., 2004), where seasonal data are extracted 

from the time series for each growing season of the focal year. During a 

period of n years, there may be 𝑛 − 1 full seasons, as well as two fractions 

of a season at the beginning and end of the time series. In Brazil, the 

agricultural year of most crops is defined as between August of a given year 

and October of the following year (CONAB, 2010); therefore, when 

extracting seasonality parameters, we used the period of August 4, 2015, 

to October 1, 2016, as the focal year. We fitted the time series using the 

Savitzky-Golay filter (JÖNSSON; EKLUNDH, 2004; ZHANG et al., 2003) 

with a window size of 4. Among the three available approaches in TIMESAT, 

we found in Chapter 4 that this function is recommended for cropland areas 

in the Brazilian Cerrado (BENDINI et al., 2017a). During the fitting 

procedure, a primary maximum is always given, and a secondary maximum 

may be found. If the amplitude ratio between the secondary maximum and 

the primary maximum exceeds the user-defined threshold (seasonality 

parameter), it will detect two annual seasons.  

Since our focus was detection of agricultural areas, the seasonality 

parameter was set to 0, forcing the software to treat the data as if there were 

two annual seasons. A set of 13 phenometrics were derived for each season 

(S1 and S2).  

The start of season (SoS) and the end of season (EoS) are the dates when 

the values at the left and right edges, respectively, have increased to a 

defined percentage of the minimum value on the corresponding side. We 

selected a value of 10% of the vegetation growth amplitude to detect the 

SoS and EoS (SHANG et al., 2017). The start value (StartVal) and end value 

(EndVal) are the EVI values for SoS and EoS, respectively (JÖNSSON, P.; 

EKLUNDH, L., 2015). The length of the season (LoS) is the time between 

the start and the end of the season. The base value (Base) is the average 

of the left and right minimum values. The middle of the season (Mid) is 

computed as the mean value of observation dates, for which the left edge 

has increased to the 80% level and the right edge has decreased to the 80% 
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level. The maximum value (Peak) is the largest data value for the fitted 

function during the season. The seasonal amplitude (Amp) is the difference 

between the maximum value and the base level. The left derivative (Lder) 

and right derivative (Rder) are the ratios of the difference between the left 

or right 20% and 80% levels and the corresponding time difference. The 

large seasonal integral (Linteg) is the integral of the function describing the 

season from start to end. The small seasonal integral (Sinteg) is the integral 

of the difference between the Linteg and the base level from start to end of 

the season.  

Besides the TIMESAT phenometrics, we also used the phenometrics 

proposed by Körting et al. (2013) (KÖRTING, 2013), which are also called 

polar features, since the purpose is to represent the time series by 

projecting the values onto angles in the interval [0,2𝜋].  

Let a cycle be the function 𝑓(𝑥) = (𝑥, 𝑦, 𝑇), where (𝑥, 𝑦) is the spatial 

position of a point, and 𝑇 is a time interval 𝑡1, … 𝑡𝑁, and 𝑁 is the number of 

observations in such a cycle. The cycle can be visualized as a set of values 

𝑣𝑖 ∈ 𝑉, where 𝑣𝑖 is a possible value of 𝑓(𝑥, 𝑦) in time 𝑡𝑖. Let its polar 

representation be defined by the function 𝑔(𝑉) → {𝐴, 𝑂} (𝐴 corresponds to 

the abscissa axis in the Cartesian coordinates, and 𝑂 to the ordinate axis) 

where: 

𝑎1 = 𝑣𝑖 cos (
2𝜋

𝑁
) ∈ 𝐴, 𝑖 = 1, … 𝑁                       (5.5) 

and 

𝑜1 = 𝑣𝑖 𝑠𝑖𝑛 (
2𝜋

𝑁
) ∈ 𝑂, 𝑖 = 1, … 𝑁                       (5.6) 

Considering 𝑎𝑁 + 1 = 𝑎1 and 𝑜𝑁 + 1 = 𝑜1, we can obtain the coordinates of 

a closed shape. We then calculate the area of the resulting shape for each 

of the quadrants ([𝜋, 3𝜋 2⁄ ], [𝜋 2⁄ , 𝜋], [0, 𝜋 2⁄ ] and[3𝜋 2⁄ , 2𝜋]), which we refer 

to here as Q1, Q2, Q3 and Q4, respectively, and are supposed to represent 

the seasons.  
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5.2.6. Random Forest classification 

After the feature extraction, we used our field database to train Random 

Forest (RF) (BREIMAN, 2001) and obtained a classifier for each 

nomenclature level. We used a hierarchical classification approach by which 

“Annual crop and Semi-perennial crop” / “Perennial crop and Non-crop” 

domains are isolated at level 1, and land cover is classified by 

correspondence at level 2. Then we isolated the “Annual crop” class and 

used it to classify land use by correspondence for each domain for the 

subsequent nomenclature levels.  

RF is a classification technique in which the dataset is randomly divided into 

several smaller subsets, and a decision tree is built from each subset. The 

training dataset is randomly divided into several smaller subsets through 

bootstrapping — i.e., a bagging-based approach (random sampling with 

replacement) (HAN et al., 2011) — and a decision tree is built for each 

subset. All the trees contribute to classification by voting on the class to 

which a target attribute belongs. Random forests need two parameters to 

be tuned including the number of trees (ntree), and the number of variables 

(mtry). The RF algorithm has been widely used in remote sensing 

applications (CLARK et al., 2010; PEÑA; BRENNING, 2015; MÜLLER et 

al., 2015; BENDINI et al., 2017b) due to advantages such as efficiently 

handle large databases, providing estimates on most relevant variables, 

and allowing the identification of outliers (RODRIGUEZ-GALIANO et al., 

2012). Furthermore, RF classifier is considered stable and relatively 

efficient, involving few user-defined parameters and yielding overall 

accuracy levels that are either comparable to or better than other classifiers 

(LAWRENCE et al., 2006; CHAN et al., 2008; PAL, 2005). The 

“randomForest” package in R was used for our classification tasks (LIAW; 

WIENER, 2002). To assess accuracy, we used an exhaustive method 

based on the Monte Carlo simulation, which performs random experiments 

to solve mathematical models and complex problems. The goal is to 

simulate a real system based on the large samples theory (RUBINSTEIN; 

KROESE, 2008). To execute the Monte Carlo simulation, 1000 simulations 

were carried out by randomly selecting 70% of the samples from the total 
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and using these to train a RF classification model for each hierarchical level 

(Table 1); the remaining 30% were used for validation. For each subdivision, 

a confusion matrix was calculated, and the average confusion matrix was 

used to derive the overall accuracy and the class f1-scores.  

5.3. Results and Discussion  

5.3.1. Phenological profiles 

We derived pixel-wise EVI profiles from the 8-day temporal resolution 

Landsat time series for the period 2013–2017. Figure 5.2 shows averaged 

profiles for the target period of 2015–2016, with the respective standard 

deviations for each class of level 2 (Land Cover) based on the training pixels 

of all the study sites.  

Figure 5.2 – Averaged EVI phenological profiles for each Land Cover class in the 
season 2015–16 (black lines), with their respective standard deviations (blue 
margins). 
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Arvor et al. (2011) observed similar patterns for the Annual crop class while 

using EVI data with coarser spatial resolution and analyzing the temporal 

profiles of this land cover class in the Cerrado (ARVOR et al., 2011). 

The natural vegetation classes (Natural grasslands, Savanna and Forest) 

showed a general seasonal trend in the EVI profiles: a dry season from July 

to September followed by a green-up in mid-October, then a green season 

until June.  

Ratana et al. (2005) found similar results for different physiognomies in the 

Cerrado (RATANA et al., 2005), using coarse spatial resolution data. 

However, their results with respect to the forest classes do not agree with 

those found by Arvor et al. (2011), who found higher EVI values (ARVOR et 

al., 2011). Schwieder et al. (2016) also found different results (SCHWIEDER 

et al., 2016), albeit using tasseled cap transformation, but we can verify a 

shift between the green seasons for the natural vegetation classes. These 

differences may be associated with the differences between these classes 

along different latitudes, due primarily to the precipitation regime and terrain.  

Furthermore, as mentioned before, we used the three main Cerrado 

physiognomic classes, which aggregate the different forest physiognomies 

into one class, and all differences between them are incorporated. However, 

our goal was not to map natural vegetation in detail.  

Even so, our fitted temporal profiles also show the potential to derive land 

surface phenology (LSP) in savanna ecosystems at the Landsat spatial 

resolution, thus ratifying the methodology proposed by Schwieder et al. 

(2016) (SCHWIEDER et al., 2016). 

Figure 5.3 displays the averaged pixel-based EVI temporal profiles and 

standard deviations for all level 3 classes (Crop Group), based on the 

training dataset for all study sites. 
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Figure 5.3 – Averaged EVI phenological profiles for each Crop Group (Level 3) 
class in the season 2015–2016 (black lines), with their respective standard 
deviations (blue margins). 

 

The temporal profiles for the double-cropping system of the “First crop / 

Second crop” class is mostly represented by a first season of soy, or 

occasionally maize, generally planted from late September to mid-

November or even in early December (particularly in western Bahia). The 

harvest period occurs from late January to mid-March. The second season 

commonly consists of maize or cotton. Planting occurs between the end of 

February and beginning of March, depending on when the first-season 

crops are harvested. The harvest period of the second-season crops occurs 

from June to early July. These results agree with the findings of other 

authors (ARVOR et al., 2011; OLIVEIRA et a., 2014). The first season of 

the “First crop / Winter crop” class can begin approximately one month later 

than that of the “First crop / Second crop” class. The slope of the green-up 

curve is subtly less pronounced, because the first crop in this class is usually 

maize, which has a longer green-up period than soy (NGUY-ROBERTSON 
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et al., 2012). In the southeastern region of São Paulo, the winter crops are 

represented mostly by potatoes or minor crops like onions and carrots; 

these are planted from mid-March to June and harvested by late September 

or early October.  

The single-crop class is represented mostly by cotton, soy and maize. When 

cultivated in a single-cropping system, cotton crops are planted between 

October and December and harvested from April to July. This agricultural 

practice is common in the region, where the agriculture intensification 

process is not well consolidated, as we mentioned before (SPERA et al., 

2016). Finally, the crops of the “Single crop / Non-commercial crop” class 

are planted from March to May, after the late soy, and harvested between 

June and July. These classes were not well described by the EVI temporal 

profiles, because we expected the first-season crops to present a higher 

peak between November and March instead of between April and June. 

This fact emphasizes the need to consider that, in some regions, farmers 

grow non-commercial crops between October and November and plant the 

main crops between February and March. The non-commercial crops are 

used to maintain a constant vegetation cover (millet, sorghum and 

brachiaria) on the field during the dry season, reducing soil erosion and 

improving soy productivity when a no-tillage agricultural system is used 

(ARVOR et al., 2011). 

5.3.2. Phenometrics 

We used the derived EVI temporal profiles using TIMESAT to calculate 

pixel-wise phenological parameters for the season 2015 – 2016 and 

describe the course of the phenological profiles. The distribution of these 

parameters in each class highlighted their phenological differences (see 

Figure A1 in Appendix A for EVI phenological parameters for the level 1 

classification based on the set of training pixels). The phenometrics of the 

first season (EoS.S1, LoS.S1, Amp.S1, Lder.S1, Rder.S1 and Q3) in 

particular show a clear separability between the two classes. Length of 

season revealed what we expected for agriculture: the complete 

phenological cycle is defined by the planting and harvesting activities and, 
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for most crops, generally lasts around 90 to 180 days. The main season of 

the non-crop class is strongly related to the natural vegetation greenness 

period, which extends from the rainy season to the post-summer period (200 

to 280 days, depending on the region). The left and right derivatives are 

related to greening-up and browning, respectively. As expected, due to the 

abrupt changes in the EVI time series during planting and harvesting, the 

crop class presented much higher values for these variables. Except for the 

outliers, the “Perennial crop and Non-crop” class did not show a second 

season.  

The variables amplitude, right derivative, left derivative and Q3 for the first 

season can be used to separate annual crops and semi-perennial crops for 

level 2 classification (see Figure A2 in Appendix A for EVI phenological 

parameters for level 2 classification based on the set of training pixels). 

Sugarcane crops constitute the Semi-perennial class; thus, higher values 

were expected for length of season, since a normal sugarcane cycle is 

about 9–12 months (for one-year sugarcane and winter sugarcane) or 18 

months (one-and-a-half-year sugarcane). By integrating different varieties 

of sugarcane in our samples, the phenometrics describing the start, end, 

and length of season for this class varied widely. In general, the parameters 

used for season detection in TIMESAT were not adjusted for semi-perennial 

crops, since our work focused on annual crops. Despite this, the hierarchical 

classification efficiently separated semi-perennial crops from annual crops. 

We highlight the importance of the variables generated with polar 

representation (Q3 and Q4), which does not depend on season detection—

these variables showed a high potential for increasing the separability of 

these classes.  

Figure 5.4 displays the distribution of the EVI phenological parameters for 

the level 3 classification (First Crop / Second Crop, First crop / Winter crop, 

Single crop, and Single / Non-commercial crop) based on the set of trainings 

pixels.  
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Figure 5.4 – Boxplots with the mean, 25 and 75 percentiles of EVI phenological 
parameters for level 3 classification (First crop / Second crop, First crop / Winter 
crop, Single crop, and Single / Non-commercial crop) based on the training pixels.) 
based on the training pixels.  

 

Figure 5.4 shows a large variation in most of the parameters for the second 

season of the “First crop / Winter crop” and the “Single crop / Non-

commercial crop” classes. This may be explained by the higher diversity of 

crops cultivated in these classes compared to the “First crop / Second crop” 

class, in which the major crops planted in the second season are maize and 

cotton. Base, start and end values for “First crop / Winter crop” are low, 

which is possibly related to the fact that potato crops require intensive tillage 

operations for planting, while maize, cotton and soy in double-cropping 

systems are planted mostly without tillage. We verified that base, start and 
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end values are generally lower for the “Single crop” class, which is 

represented largely by soy, and the majority of the samples are in region A, 

in western Bahia. This may be related to the fact that, in single-cropping 

systems, soy is usually planted through conventional systems, i.e. soil 

tillage, which agrees with the results of Spera et al. (2016) showing that, in 

2015, 85% of the large-scale agriculture in the MATOPIBA region was 

based on single-cropping systems (SPERA et al., 2016). “First crop / Winter 

crop” class had high Q3 and Q4 values. As explained before, Q3 and Q4 

correspond to the area of curve in the 1st and 4th quadrants of the EVI time 

series plotted on polar coordinates (Figure. 5.5).  

Figure. 5.5 – Pixel-wise EVI time series plotted on polar coordinates using the 
representation proposed by Körting et al. (2013) for the classes of level 3 
classification (Crop Group). 
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In Figure 5.5, the curves for the “First crop / Winter crop” are considerably 

pronounced in the 1st and 4th quadrants, which represent the periods from 

early August to mid-November and June to October. This is explained by 

the fact that the average season of the winter crops extends from April to 

October, when the other Crop Group classes are either still being planted, 

greening-up or in senescence and being harvested.  

In general, the phenometrics explain what was shown in the EVI temporal 

profiles, and they conform to our expectation based on the crop calendars, 

field observations, and reports by other authors (ARVOR et al., 2011; 

OLIVEIRA et al., 2014). They also demonstrate their potential for the 

description of phenological parameters, which is important for many 

applications in agriculture, such as risk assessment for rural credit, yield 

estimation, and understanding the effects of policy, trade, and global and 

technological changes on food security. 

5.3.3. Land cover and agricultural mapping 

The overall accuracy and class f1-scores for each hierarchical level are 

presented in Table 5.2 (see Tables B1, B2, B3 and B4 in Appendix B for the 

complete confusion matrices of each classification level). The ntree 

parameter values of each RF classification model (Level 2, 3 and 4) were 

respectively 50, 70 and 90. 

Figure 5.6 presents the map of regions A1 and A2 (western Bahia) obtained 

at level 2 (Land cover) and level 3 (Crop Group) of the hierarchical 

classification. The cropping patterns provide information about the spatial 

distribution of the croplands. 
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Table 5.2. Overall accuracy and class wise f1-scores obtained for the different 
hierarchical classification levels. 
 

L1 (0.979)* L2 (0.993 and 0.912)** L3 (0.964)* L4 (0.951)* 

Annual crop and 
Semi-perennial 

crop (0.988) 

Annual crop (0.996) 

First crop / Second crop 
(0.981)  

Soy / Bean (0.737) 

Soy / Maize (0.956) 

Soy / Cotton (0.958) 

Soy / Soy (0.999) 

Maize / Soy (0.996) 

First crop / Winter crop 
(0.993) 

Maize / Carrot (0.994) 

Maize / Onion (0.979) 

Maize / Potato 
(0.996) 

Maize / Beans (0.993) 

Soy / Potato (0.995) 

Single crop (0.966) 

Maize (0.917) 

Soy (0.962) 

Cotton (0.950) 

Millet (0.654) 

Sorghum (0.524) 

Single crop / Non-
commercial crop (0.875) 

Cotton / Millet (0.762) 

Soy / Millet (0.761) 

Soy / Brachiaria 
(0.854) 

Soy / Sorghum (0.566) 

Soy / Weed (0.901) 

Maize / Weed (0.964) 

Maize / Regrowing 
(0.976) 

Semi-perennial crop 
(0.926) 

  Perennial crop 
and Non-crop 

(0.923) 

Perennial crop (0.915) 

Planted forest (0.901) 
Pasture (0.942) 

Forest (0.909) 

Natural grasslands 
(0.848) 

Savanna (0.872) 

* The overall accuracy of the model for the respective classification level.  

** The overall accuracies of the model for the classification level of the 

respective hierarchical classes. 
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Figure 5.6 – Map of regions A1 and A2, obtained at level 2 (Land Cover: Perennial 
crops and Non-crop classes) and level 3 (Crop Group) of the hierarchical 
classification approach. The insets (i), (ii), (iii) and (iv) show zoomed-in areas of 
the maps. For the production of the maps, we grouped the different classes of 
natural vegetation into one. 

 

This map also shows that although the single-cropping system is not 

recommended, because it increases soil and water pollution and reduces 

soil fertility (CARVALHO et al., 2009), it is still being widely used in this 

region. The soils in this region are sandier and less physically suitable than 

in Mato Grosso, and the region receives less rainfall; these aspects pose a 

challenge to adopting double-cropping regimes (SPERA et al., 2017). 

Double-cropping systems occur mostly in irrigated areas or in the western 

side of the region A1, where precipitation is higher (DOURADO et al., 2013). 

Perennial crops were mapped in the northern study area, especially in 

irrigated areas (usually coffee). An area in the eastern part of region A2 also 

has a large concentration of perennial crops, which, according to our field 

knowledge, is mostly banana and papaya.  
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The presence of perennial crops in this area may be related to this region’s 

proximity to the São Francisco River, making it better for irrigation. 

Confusion between perennial crops and planted forest is possibly due to the 

evergreen phenological behavior of these classes (Figure 5.2). The Natural 

grasslands, Savanna and Pasture classes contain much salt-and-pepper 

noise (Figure 5.7). A large area of natural vegetation was included in the 

Annual crop class in the southern area of the region.  

We observed high amplitude in the EVI time series for these areas, which 

suggests a great seasonal variation. We believe that more studies should 

investigate whether this result is related to this area’s proximity to transition 

zones between the Cerrado and Caatinga biomes. Moreover, some patterns 

of deforestation are visible—the clearing of forest vegetation, leaving a 

predominance of grasses and shrubs, may increase seasonality (SANO et 

al., 2010). We used the Modified Normalized Difference Water Index 

(MNDWI) (XU, 2005) to derive a mask of the water bodies; this revealed 

some small dams, most of which are close to center-pivot irrigated areas 

(see insets in Figure 5.6). 

Figure 5.7 presents the map of region B (southeast of Mato Grosso) 

obtained at levels 2 and 3 of the hierarchical classification. The Crop Group 

map shows that most of the agricultural areas are based on double-cropping 

systems (First crop / Second crop class), but some small areas of single 

cropping and of single non-commercial crops remain, mostly in the 

northeast. 
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Figure 5.7 – Map of region B, obtained at level 2 (Land Cover: Perennial crops and 
Non-crop classes) and level 3 (Crop Group) of the hierarchical classification 
approach. For the production of the maps, we grouped the different classes of 
natural vegetation into one. 

 

Figure 5.7 illustrates the predominance of pasture in the peripheral areas, 

though there is some confusion between natural vegetation types. We can 

see some patterns of noise on the west side of this area, the shape of which 

can be compared to SLC stripes. We found that pixels with high cloud 

intensity, combined with SLC noise, result in less clean observations; 

consequently, the RBF algorithm fails to correctly approximate the time 

series. Unexpectedly some perennial crops are visible in the south. 

Inspection of the Google Earth images verified some confusion between 

perennial crops and forest in the south. This can be confirmed by analyzing 

the confusion matrix for the respective classes. We can also observe semi-

perennial crops in the south, which includes the municipality of Jaciara, one 

of the biggest sugarcane producers of Mato Grosso State (IBGE, 2016). 

This demonstrates the capacity of the proposed method to map semi-

perennial crops. Figure 5.8 presents the map of region C (northeast of São 
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Paulo), obtained at levels 2 and 3. The map shows a great heterogeneity of 

classes, because this is a smallholder agricultural zone, where farmers grow 

different crops throughout the year. Most of the agricultural areas are 

concentrated on the western side of the study area, which belongs to the 

Cerrado biome and is characterized by a flat topography. The scenario in 

this area is one of intensive agriculture, with double-cropping systems (“First 

crop / Second crop” and “First crop / Winter crop” classes) using center-

pivot irrigation, and different crop systems are adopted within the same 

area. Semi-perennial crops, as well as some perennial crops, are also 

observed. The perennial crops here are mostly citrus and coffee (on the 

eastern side).   

Figure 5.8 – Map of region C, obtained at level 2 (Land Cover: Perennial crop and 
Non-crop classes) and level 3 (Crop Group) of the hierarchical classification 
approach. For the production of the maps, we grouped the different classes of 
natural vegetation into one. 

 

In the eastern region, we observed some confusion between forest and 

perennial crops, which may be related to the transition into the Atlantic 
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Forest biome as well as to the irregular terrain, the shadow effects of which 

may affect the EVI time series. Pasture areas were consistently mapped in 

the east of the study region.  

We selected three municipalities within the study regions to visualize the 

level 4 classification results. The municipalities are Luís Eduardo 

Magalhães-BA (region A1), Campo Verde-MT (region B) and Itobi-SP 

(region C). Figure 5.9 shows the map of the respective municipalities with 

the level 2, 3 and 4 classifications.  

Campo Verde presented a consolidated agricultural scenario, with a large 

area of double-cropping systems of soy/maize or soy/cotton. This finding is 

in agreement with other studies (ARVOR et al., 2011; OLIVEIRA et al., 

2014). The northeast features single cropping and single crop / non-

commercial crop systems. We also mapped rotation systems of soy and 

potatoes in some areas. Although we did not collect any samples of potato 

crops in this region, other authors found increased potato production in 

irrigated systems in the area (DOURADO et al., 2012).  

Soy planted in a single-cropping system was the main crop mapped in 

western Bahia, which is in line with our field observations. The central-east 

region, however, has large areas of cotton crops and double-cropping 

systems of soy with maize in center-pivot irrigated areas. In Itobi 

municipality in São Paulo, we find mainly double-cropping of soy or maize 

with potatoes in center-pivot irrigated areas, but there are also smaller areas 

of double-cropping systems with winter crops such as beans and onions.  

The map also shows areas with rotation of soy and cotton, but since we did 

not observe any cotton crops during our field surveys, we consider this to 

be a classification error. We can confirm this by the confusion matrix, which 

shows confusion between double-cropping systems of soy/maize and 

soy/cotton. 

 

Figure 5.9 – Classification results based on seasonal phenological parameters for 
the municipalities of Luís Eduardo Magalhães-BA (region A1), Campo Verde-MT 
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(region B) and Itobi-SP (region C), obtained at level 2 (Land Cover: “Annual crop 
and Semi-Perennial crop” only), level 3 (Crop Group) (a, c, e) and level 4 (Crop 
Rotation) (b, d, f) of the hierarchical classification approach. 

 

(a)                                                                     (b) 

 

 

(c)                                                                     (d) 

 

(e)                                                                     (f) 

 

 

 

5.3.4. Outlook 
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Our results show that the proposed Landsat-based method of hierarchical 

classification can map agricultural land use in the Cerrado biome. 

Furthermore, the results reinforce the method’s potential for mapping 

natural vegetation. Despite the limitation of using TIMESAT to extract 

phenometrics for semi-perennial crops, the hierarchical classification 

enabled accurate separation of semi-perennial and annual crops. The use 

of variables generated with polar representation (Q3 and Q4), which does 

not depend on season detection, revealed a high potential for increasing the 

separability for these classes, especially the crop group classification.  

This work follows the assumption that our samples covered the most 

representative crop group classes in the Brazilian Cerrado biome. However, 

the results showed that a more detailed analysis should be done for the 

“Single crop / Non-commercial crop” class, with a focus on the different 

planting periods of the main crop season. Depending on the planting period, 

the non-commercial crop cycle might be detected in the previous crop year, 

revealing a potential “Non-commercial crop / Single crop” class. There was 

also some confusion in regions near areas of transition to different biomes 

(Caatinga and Atlantic Forest). The EVI time series for these classes 

showed that the vegetation in these regions has high amplitude due to its 

large seasonal variation, which may explain this confusion. This fact points 

to the need for different approaches to mapping agriculture in these areas. 

We are aware of the method’s dependence on data availability. However, 

the upcoming availability of Sentinel-2 and CBERS-4 data will increase the 

density of clear observations, though there will also be challenges in the 

harmonization of these datasets. Even though these satellites will be 

essential for overcoming these issues in the future, the presented 

methodology based on Landsat data still provides options for mapping 

historical agricultural land use, allowing land-use change mapping and 

analysis. 

6 SYNTHESIS 
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The main objective of this work was to develop, to describe, and to assess 

a method based on phenological metrics derived from dense high spatial 

resolution image time series for classifying, with significantly detail, 

agricultural land use in the Cerrado biome. The following sections will revise 

the main contributions of this thesis by answering some scientific questions 

and then discuss further research topics.  

6.1. Can we use CBERS-4 MUX data to remove noise in a Landsat-8 

OLI NDVI and EVI image time series to improve a crop classification 

method based on phenological information? 

We observed a slight increase in the classification accuracy when using the 

method described in Chapter 3, in which we used CBERS-4 MUX data to 

remove noise in Landsat-8 OLI time series. The results for EVI were 

consistently more accurate compared to NDVI, reinforcing what was 

expected following the main findings on the literature, and this result 

supported our decision on keep working with EVI on the next steps. There 

is a great potential for using CBERS-4 imagery, but image normalization 

procedures are needed to make it compatible with Landsat-8, as well it´s 

important to consider that different atmospheric correction methods and 

ancillary datasets may affected the results. In this thesis we contributed to 

show the feasibility about integrating CBERS-4 MUX data and Landsat-8 to 

produce image time series for agricultural land classification. However, this 

integration process still demands more improvements, and also it is not 

enough to generate agricultural land classification with higher accuracy. In 

the same way, the proposed method can be applied for integrating other 

sensors such as CBERS-4 WFI, Landsat 7 ETM+, and Sentinel MSI. 

 

 

 

6.2. Which smoothing method is better for phenological metrics-

based crop classification with Landsat-8 OLI EVI image time series in 

the Cerrado biome? 
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In Chapter 4 we evaluated three different time series smoothing methods, 

Savitzky-Golay, asymmetric Gaussian function and Double-logistic function, 

combined or not with filtering techniques. The evaluation was performed 

through their use in the agricultural land classification based on the 

phenological parameters extracted from one-year Enhanced Vegetation 

Index (EVI) Landsat-8 image time series. The smoothing method that 

provided the highest classification accuracy was the Savitzky-Golay applied 

to raw time series (86% and kappa=0.82), followed by the asymmetric 

Gaussian applied to filtered time series (81% and kappa=0.754). 

 

6.3. Can we integrate Landsat-8 OLI and Landsat-7 ETM+ data to 

generate a dense high spatial resolution image time series, for 

classifying agricultural land use in the Cerrado? 

In Chapter 5, we used a weighted ensemble of RBF convolution filters as a 

kernel smoother to approximate missing data, thereby generating an 8-day 

temporal resolution data cube using data from the Landsat 7/ETM+ and 

Landsat 8/OLI sensors, as well as deriving the phenometrics to run a RF 

classification in a hierarchical scheme. We showed that phenometric 

attributes are feasible to classify agricultural land in the Cerrado biome with 

high classification accuracy. To our knowledge, this work is the first one to 

produce detailed, consistent and reproducible agricultural crop maps in the 

Brazilian Cerrado using Landsat data. The results can also be used to 

assess the interplay between production and protection in the Brazilian 

Cerrado biome.  

 

6.4. Are Landsat based phenological metrics suitable to analyze crop 

management practices of the major crops in the Cerrado? 

In chapter 5, we demonstrated that the phenological metrics are feasible to 

describe phenological information about the major crops that Brazilian 

farmers grow in the Cerrado biome. This is one important contribution as 
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this information can be useful for understanding agricultural practices, 

supporting risk assessment analyses for rural credit, yield estimation, and 

understanding the effects of policy, trade, and global and technological 

change on food security.  

6.5. Future work 

Based on the results of this thesis, we described some specific topics for 

future work: 

• Test multi-sensor integration methods with different sensors, such as 

CBERS-4 WFI and Sentinel-2A and 2B MSI; 

• Develop infrastructure and apply the methodology for the entire 

Cerrado and for a longer period of time, comparing with the official 

statistics for the period; 

• Relate phenological metrics with productivity estimates; 

• Compare with other classification approaches, making use of Deep 

Learning techniques; 

• Compare the maps obtained with official databases. 
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Appendix A 

 

Figure A1. Boxplots with the mean, 25 and 75 percentiles of EVI phenological 
parameters for level 1 classification (Annual crop and Semi-perennial crop; 

Perennial crop and Non crop) based on the training pixels. 
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Figure A2. Boxplots with the mean, 25 and 75 percentiles of EVI phenological 
parameters for level 2 classification (Annual crop and Semi-perennial crop) 

based on the training pixels.  
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Appendix B 

 

 

Table B1. Mean Confusion Matrix of classification Level 1 (Annual crop and 

Semi-perennial crop) resulting from the Monte Carlo process, with 1000 

simulations. 

 Reference 

Prediction Annual crop and Semi-perennial crop Perennial crop and Non crop 

Annual crop and Semi-perennial crop 13847,31 113,11 

Perennial crop and Non crop 229,49 2055,08 

 

 

 

 

 

 

Table B2. Mean Confusion Matrix of classification Level 2 (Annual crop and 

Semi-perennial crop) resulting from the Monte Carlo process, with 1000 

simulations. 

 Reference 

Prediction Annual crop Semi-perennial crop 

Annual crop  13235.04 32.34 

Semi-perennial crop 68.25 623.37 
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Table B3. Mean Confusion Matrix of classification Level 3 (First crop / 

Second crop, First crop / Winter crop, Single crop, and Single / Non-

commercial crop) resulting from the Monte Carlo process, with 1000 

simulations. 

 Reference 

Prediction First crop / Second crop First crop / Winter crop Single crop Single / Non-commercial crop 

First crop / Second crop  6999,33 0,04 24,68  55,04 

First crop / Winter crop 2,69 485,21      0,64 2,30 

Single crop 38,20 0,686     3818,37 92,73 

Single / Non-commercial crop 144,89 0,16     114,38 1361,67 
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Table B4. Mean Confusion Matrix of classification Level 4 (Crop Rotation) resulting from the Monte Carlo process, with 1000 
simulations. 

Reference 

Prediction Maize 
Maize / 

Beans 

Maize / 

Carrot 

Maize / 

Onion 

Maize / 

Potato 

Maize  / 

Regrowing 

Maize  

/ Soy 

Maize  / 

Weed 
Cotton 

Cotton / 

Millet 
Millet Sorghum Soy 

Soy 

/ 

Bean 

Soy / 

Braquiaria 

Soy /  

Maize 

Soy / 

Cotton 

Soy / 

Millet 

Soy / 

Potato 

Soy / 

Sorghum 

Soy / 

Soy 

Soy / 

Weed 

Maize 649,52 0,00 0,00 0,00 0,00 0,00 0,00 0,00 4,20 0,29 0,00 0,00 73,57 0,00 0,00 2,25 0,02 0,16 0,00 0,00 0,00 0,01 

Maize / Beans 0 93,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,34 0,40 0,32 0,19 0,00 0,00 0,00 0,00 

Maize  / Carrot 0 0,01 26,00 0,00 0,00 0,001 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,31 0,00 0,00 0,00 

Maize  / Onion 0 0,00 0,00 30,31 0,00 0,31 0,00 0,00 0,00 0,12 0,00 0,00 0,024 0,00 0,01 0,01 0,00 0,00 0,02 0,00 0,00 0,00 

Maize  / Potato 0,00 0,00 0,00 0,00 61,00 0,00 0,00 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

Maize  / Regrowing 0,21 0,00 0,00 0,77 0,00 40,63 0,00 0,00 0,01 0,01 0,00 0,00 0,35 0,00 0,28 0,02 0,10 0,01 0,00 0,00 0,00 0,00 

Maize  / Soy 0,00 0,00 0,00 0,00 0,00 0,00 122,81 0,00 0,34 0,00 0,00 0,00 0,05 0,00 0,00 0,29 0,00 0,00 0,00 0,00 0,00 0,00 

Maize  / Weed 0,00 0,00 0,00 0,00 0,27 0,00 0,00 7,23 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 

Cotton 0,61 0,00 0,00 0,00 0,00 0,00 0,00 0,00 889,96 0,08 0,00 0,07 5,80 0,00 0,78 11,71 19,06 2,40 0,00 0,00 0,00 0,39 

Cotton / Millet 0,23 0,00 0,00 0,01 0,00 0,01 0,00 0,00 0,80 13,27 0,02 0,00 0,45 0,00 1,52 0,04 0,10 0,69 0,01 0,00 0,00 1,26 

Millet 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,03 0,89 4,26 0,00 1,11 0,00 0,21 0,17 0,10 0,37 0,00 0,00 0,00 0,14 

Sorghum 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 4,01 5,03 0,00 0,00 1,75 0,02 0,04 0,00 0,00 0,00 0,00 

Soy 30,09 0,00 0,00 0,00 0,00 0,00 0,00 0,00 14,50 0,00 0,00 0,00 2387,22 0,00 3,42 10,28 0,81 0,52 0,69 0,00 0,00 1,09 

Soy / Bean 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 2,64 0,00 0,65 0,21 0,00 0,00 0,25 0,00 0,03 

Soy / Braquiaria 0,15 0,00 0,01 0,00 0,00 0,00 0,00 0,00 2,911 0,11 0,01 0,00 0,67 0,00 121,08 12,28 3,74 1,52 0,03 0,00 0,00 0,05 

Soy /  Maize 3,39 0,00 0,00 0,00 0,00 0,05 0,00 0,00 9,10 0,34 0,00 0,09 9,36 0,00 8,68 3458,51 68,12 1,73 0,11 0,02 0,00 1,97 

Soy / Cotton 0,74 0,00 0,00 0,00 0,00 0,00 0,00 0,00 15,61 0,25 0,00 0,00 0,85 0,01 1,68 126,84 2879,94 3,86 0,00 0,42 0,00 1,81 

Soy / Millet 0,38 0,01 0,00 0,00 0,00 0,00 0,00 0,00 4,03 0,74 0,01 0,00 1,71 0,00 2,54 14,97 4,00 68,56 0,00 0,00 0,00 0,69 

Soy / Potato 0 0,01 0,04 0,05 0,00 0,00 0,29 0,00 0,00 0,00 0,00 0,00 0,81 0,00 0,31 0,01 0,00 0,00 267,75 0,00 0,00 0,00 

Soy / Sorghum 0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,25 0,00 0,00 0,00 0,09 0,27 0,00 24,60 3,11 0,00 0,00 19,06 0,00 0,15 

Soy / Soy 0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,03 0,02 0,00 0,00 0,00 15,05 0,00 

Soy / Weed 1,23 0,00 0,00 0,03 0,00 0,00 0,01 0,00 1,25 0,14 0,01 0,00 6,1 0,00 0,29 11,22 0,83 2,30 0,08 0,00 0,00 143,90 



 
 

 


